Nav: Home

Microbes hitched to insects provide a rich source of new antibiotics

February 01, 2019

MADISON - Medicine was transformed in the 20th century by the discovery and development of antibiotics, the vast majority of which came from one source: soil bacteria.

But we seem to have tapped out that supply. Resistance by disease-causing pathogens to existing antibiotics is increasing, endangering millions of lives and costing billions of dollars. New surveys of soil bacteria tend to turn up old chemicals. And few pharmaceutical companies are developing new antibiotic drugs.

But the same class of bacteria that gave us many of our antibiotics, known as Streptomyces, makes a home not just in the soil but all over, including on insects. Cameron Currie, a University of Wisconsin-Madison professor of bacteriology, has shown that some of these insect-associated microbes provide their hosts with protection against infections, suggesting that insects and their microbiomes may be a rich new source of antibiotics for use in human medicine.

So with a team of collaborators, Currie set out to test that idea, thousands of times over. In an exhaustive search of microbes from more than 1,400 insects collected from diverse environments across North and South America, Currie's team found that insect-borne microbes often outperformed soil bacteria in stopping some of the most common and dangerous antibiotic-resistant pathogens.

In their work, the scientists discovered a new antibiotic from a Brazilian fungus-farming ant, naming it cyphomycin. Cyphomycin was effective in lab tests against fungi resistant to most other antibiotics and combatted fungal infections without causing toxic side effects in a mouse model. The researchers have submitted a patent based on cyphomycin because of its effectiveness in these early tests, setting up the team to begin to do the significant additional work required before cyphomycin could be developed into a new drug used in the clinic.

The study is the largest and most thorough to assess insect-associated microbes for antibiotic activity to date.

The work was published Jan. 31 in the journal Nature Communications. The study was led by Currie lab graduate student Marc Chevrette with collaborators in the UW-Madison School of Pharmacy, the UW School of Medicine and Public Health and several other institutions in North and South America.

Streptomyces evolved about 380 million years ago and have since diverged into many lineages, some of which are more commonly found in soil or associated with insects. That evolutionary distance means that insect-associated microbes have adapted to their own unique environmental contexts.

"It follows that if you look in a different evolutionary context, you find new chemistry," says Chevrette.

To survey a large portion of insect diversity, the Currie team collected more than 2,500 species across all major groups of insects, including flies, ants and bees, moths and butterflies, beetles and more. About a third were collected in tropical landscapes, and another third from temperate climates, with the remainder from arctic or other regions.

"We could collect 400 insects in a few days," says Currie, whose own collecting assignment took him to Hawaii in winter. More than half of those insects harbored the right kinds of bacteria. In all, the insects provided more than 10,000 microbes to test. The team isolated another 7,000 strains from soil or plant sources.

Then came the experiments -- a lot of them.

"The real power in our study is that we did it 50,000 times," says Chevrette.

Those 50,000 trials tested each microbe's ability to inhibit the growth of 24 different bacteria and fungi, many of which, like methicillin-resistant Staphylococcus aureus, better known as MRSA, pose serious threats to human health.

A greater proportion of insect-associated microbes were able to inhibit the growth of these bacterial or fungal targets than were microbes isolated from soil or plants.

With Professor of Medical Microbiology David Andes from the UW School of Medicine and Public Health, the researchers tested several dozen promising microbe strains for their ability to fight infections in mice. Extracts from these microbes effectively killed both bacterial and fungal pathogens, and few demonstrated toxic side effects.

As a further proof of concept, the team worked with School of Pharmacy professor Tim Bugni to purify cyphomycin and determine its chemical structure. Cyphomycin was able to treat infection in mice by Candida albicans, an opportunistic fungal pathogen that often infects immunocompromised people. Cyphomycin also showed low toxicity in mice.

By demonstrating effective antimicrobial action and low toxicity in mice, the researchers have passed the first barrier to developing new antibiotics for clinical use in humans. But many promising drugs fail further along in development, which is why it is important to identify multiple candidate antibiotics in the early stages.

Currie's team isn't surprised that insect-associated microbes are a promising source of novel antibiotics. For one, they say, insects may help select for antibiotics that are not toxic to animals. And because many insects rely on microbial antibiotics to combat ever-evolving pathogens in their own environment, they have likely selected for antibiotics that can overcome common resistance mechanisms.

"The insects are doing the prospecting for us," says Currie.
-end-
This work was supported by the National Institutes of Health (grants U19 Al109673, U19 TW009872, and National Research Service Award T32 GM008505) and the National Science Foundation (grant MCB-0702025).

Eric Hamilton, (608) 263-1986, eshamilton@wisc.edu

University of Wisconsin-Madison

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.