Research catches up to world's fastest-growing plant

February 01, 2021

LA JOLLA--(February 1, 2021) Wolffia, also known as duckweed, is the fastest-growing plant known, but the genetics underlying this strange little plant's success have long been a mystery to scientists. Now, thanks to advances in genome sequencing, researchers are learning what makes this plant unique--and, in the process, discovering some fundamental principles of plant biology and growth.

A multi-investigator effort led by scientists from the Salk Institute is reporting new findings about the plant's genome that explain how it's able to grow so fast. The research, published in the February 2021 issue of Genome Research, will help scientists to understand how plants make trade-offs between growth and other functions, such as putting down roots and defending themselves from pests. This research has implications for designing entirely new plants that are optimized for specific functions, such as increased carbon storage to help address climate change.

"A lot of advancement in science has been made thanks to organisms that are really simple, like yeast, bacteria and worms," says Todd Michael, first author of the paper and a research professor in Salk's Plant Molecular and Cellular Biology Laboratory. "The idea here is that we can use an absolutely minimal plant like Wolffia to understand the fundamental workings of what makes a plant a plant."

Wolffia, which is found growing in fresh water on every continent except Antarctica, looks like tiny floating green seeds, with each plant only the size of a pinhead. It has no roots and only a single fused stem-leaf structure called a frond. It reproduces similar to yeast, when a daughter plant buds off from the mother. With a doubling time of as little as a day, some experts believe Wolffia could become an important source of protein for feeding Earth's growing population. (It's already eaten in parts of Southeast Asia, where it's known as khai-nam, which translates as "water eggs.")

To understand what adaptations in Wolffia's genome account for its rapid growth, the researchers grew the plants under light/dark cycles, then analyzed them to determine which genes were active at different times of the day. (Most plants' growth is regulated by the light and dark cycle, with the majority of growth taking place in the morning.)

"Surprisingly, Wolffia only has half the number of genes that are regulated by light/dark cycles compared to other plants," Michael says. "We think this is why it grows so fast. It doesn't have the regulations that limit when it can grow."

The researchers also found that genes associated with other important elements of behavior in plants, such as defense mechanisms and root growth, are not present. "This plant has shed most of the genes that it doesn't need," Michael adds. "It seems to have evolved to focus only on uncontrolled, fast growth."

"Data about the Wolffia genome can provide important insight into the interplay between how plants develop their body plan and how they grow," says HHMI Investigator and Professor Joseph Ecker, who is also director of Salk's Genomic Analysis Laboratory and a coauthor of the paper. "This plant holds promise for becoming a new lab model for studying the central characteristics of plant behavior, including how genes contribute to different biological activities."

One focus of Michael's lab is learning how to develop new plants from the ground up, so that they can be optimized for certain behaviors. The current study expands knowledge of basic plant biology as well as offers the potential for improving crops and agriculture. By making plants better able to store carbon from the atmosphere in their roots, an approach pioneered by Salk's Harnessing Plants Initiative, scientists can optimize plants to help address the threat of climate change.

Michael plans to continue studying Wolffia to learn more about the genomic architecture of plant development by using this simplified plant to understand the networks that control fate.
-end-
Other authors on the study were Nolan Hartwick, Florian Jupe and Justin P. Sandoval of Salk; Evan Ernst and Robert A. Martienssen of Cold Spring Harbor Laboratory; Philomena Chu, Sarah Gilbert, and Eric Lam of Rutgers, The State University of New Jersey; Douglas Bryant and Todd C. Mockler of Donald Danforth Plant Science Center; Stefan Ortleb, Joerg Fuchs, and Ljudmylla Borisjuk of Leibniz Institute of Plant Genetics and Crop Plant Research in Germany; Erin L. Baggs and Ksenia V. Krasileva of the University of California, Berkeley; K. Sowjanya Sree of Central University of Kerala, in India; and Klaus J. Appenroth of Friedrich Schiller University of Jena, in Germany.

This work was funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research program. It was also supported by a grant from the Hatch project from the New Jersey Agricultural Experiment Station at Rutgers University and the Howard Hughes Medical Institute.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at:
Salk Institute

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.