Optimized LIBS technique improves analysis of nuclear reactor materials

February 01, 2021

WASHINGTON -- In a new study, investigators report an optimized approach to using laser-induced breakdown spectroscopy (LIBS) for analyzing hydrogen isotopes. Their new findings could enable improved rapid identification and measurement of hydrogen and other light isotopes that are important in nuclear reactor materials and other applications.

LIBS is promising for measuring hydrogen isotopes because it requires no sample preparation and data can be rapidly acquired with a relatively simple experimental setup. However, quantifying the concentration of hydrogen has been challenging with this analytical technique.

In The Optical Society (OSA) journal Optics Express, researchers from Pacific Northwest National Laboratory show that combining an ultrafast laser -- which has ultrashort pulses -- with certain environmental conditions helps improve LIBS measurements of hydrogen isotopes in industrially important alloys. This optimized technique could enable a faster analysis of materials that have been irradiated in nuclear reactor cores.

"Improved chemical imaging of hydrogen isotopes, like what we performed in this work, can be used to monitor the behavior of materials in nuclear reactors that provide us with electricity," said research team leader Sivanandan S. Harilal. "It can also be very valuable for the development of next generation materials for hydrogen storage that can enable new energy technologies and for analyzing material corrosion when exposed to water."

Measuring isotopes

In the new work, the researchers worked to find the best conditions for measuring hydrogen isotopes in Zircaloy-4. Zirconium alloys are widely used in nuclear technology, including as cladding for nuclear fuel rods in pressurized water reactors. Measuring how much hydrogen the material picks up during reactor operation is important for understanding the material performance.

To perform LIBS, a pulsed laser is used to generate a plasma on the sample. The laser-produced plasma emits light that is characteristic of the different species in the plasma plume, such as ions, atoms, electrons and nanoparticles.

Using LIBS for detecting specific isotopes requires measuring extremely narrow emission spectra of atoms. This is difficult for isotopes of lighter elements such as hydrogen because the extreme temperatures -- 10,000 Kelvin or higher -- of laser-produced plasmas broadens the spectral lines.

For the study, the researchers performed LIBS with different plasma generation conditions by using various lasers to generate plasmas and by testing different analysis environments. They collected emitted light at different times after the plasma was generated and at different distances from the sample using spatially and temporally resolved spectral imaging, or 2D spectral imaging.

"2D spectral imaging let us track where and when emission from hydrogen isotopes was the strongest," said Harilal. "Because of the multiple species present in a plasma plume and its transient nature, it is critical to analyze plasmas in a spatially and temporally resolved manner."

Ultrafast is best

The results showed that plasmas produced by ultrafast lasers were better for hydrogen isotopic analysis than traditional nanosecond laser-produced plasmas and that generating the plasmas in a helium gas environment with moderate pressure provided the best analysis conditions.

"Hydrogen is present in all environments, making it challenging to distinguish the hydrogen that needs to be measured from that in the environment using any analytical technique," said Harilal. "Our results show that ultrafast LIBS is capable of differentiating hydrogen impurities from solute hydrogen."

The researchers plan to perform additional studies to further optimize the use of ultrafast lasers for hydrogen isotopic analysis with LIBS.
-end-
Paper: E. J. Kautz, A. Devaraj, D. J. Senor, S. S. Harilal, Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy, Opt. Express, 29, 4, 4936-4946 (2021).
DOI:https://doi.org/10.1364/OE.412351.

About Optics Express

Optics Express reports on scientific and technology innovations in all aspects of optics and photonics. The bi-weekly journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society (OSA) and led by Editor-in-Chief James Leger of the University of Minnesota, USA. Optics Express is an open-access journal and is available at no cost to readers online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:
mediarelations@osa.org

The Optical Society

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.