Mysterious magnetic fossils offer past climate clues

February 01, 2021

There are fossils, found in ancient marine sediments and made up of no more than a few magnetic nanoparticles, that can tell us a whole lot about the climate of the past, especially episodes of abrupt global warming. Now, researchers including doctoral student Courtney Wagner and associate professor Peter Lippert from the University of Utah, have found a way to glean the valuable information in those fossils without having to crush the scarce samples into a fine powder. Their results are published in Proceedings of the National Academy of Sciences.

"It's so fun to be a part of a discovery like this, something that can be used by other researchers studying magnetofossils and intervals of planetary change," Wagner says. "This work can be used by many other scientists, within and outside our specialized community. This is very exciting and fulfilling."

The name "magnetofossil" may bring to mind images of the X-Men, but the reality is that magnetofossils are microscopic bacterial iron fossils. Some bacteria make magnetic particles 1/1000 the width of a hair that, when assembled into a chain within the cell, act like a nano-scale compass. The bacteria, called "magnetotactic bacteria," can then use this compass to align themselves to the Earth's magnetic field and travel efficiently to their favorite chemical conditions within the water.

During a few periods in the Earth's past, at the beginning and middle of the Eocene epoch from 56 to 34 million years ago, some of these biologically-produced magnets grew to "giant" sizes, about 20 times larger than typical magnetofossils, and into exotic shapes such as needles, spindles, spearheads and giant bullets. Because the bacteria used their magnetic supersense to find their preferred levels of nutrients and oxygen in the ocean water, and because the giant magnetofossils are associated with periods of rapid climate change and elevated global temperature, they can tell us a lot about the conditions of the ocean during that rapid warming, and especially how those conditions changed over time.

Previously, extraction and analysis of these fossils required crushing the samples into a fine powder for electron microscopy imaging. "The extraction process can be time-consuming and unsuccessful, electron microscopy can be costly, and the destruction of samples means that they are no longer useful for most other experiments," Wagner says. "Collection and storage of these samples require specialized personnel, equipment and planning, so we want to preserve as much material for additional studies as we can."

So Wagner, Lippert and colleagues including Ramon Egli from the Central Institute for Meteorology and Geodynamics and Ioan Lascu at the National Museum of Natural History, found another way. Using sediment samples collected in New Jersey, they designed a new way of conducting an analysis called FORC (first order reversal curve) measurements. With these high-resolution magnetic measurements, they found that the magnetic signature of giant magnetofossils was distinctive--enough that the technique could be used in other samples to identify the presence of the fossils. "FORC measurements probe the reaction of magnetic particles to externally applied magnetic fields, enabling to discriminate among different types of iron oxide particles without actually seeing them," says Egli.

"The ability to rapidly find giant magnetofossil assemblages in the geologic record will help to identify the origin of these unusual magnetofossils," the researchers write, as well as the ecology of the organisms that formed them. This is important, Wagner says, because no known living organisms form giant magnetofossils today, and we still don't know what organisms formed them in the past. "The organisms that produced these giant magnetofossils are utterly mysterious, but this leaves exciting research avenues open for the future" adds Lascu.

Beyond that, though, the information contained in magnetofossils helps scientists understand how oceans responded to past climate changes--and how our current ocean might respond to ongoing warming.
After publication, find the full study here. Although the embargo lifts on Feb. 1 at 1 p.m. Mountain/3 p.m. Eastern, the online version may publish anytime during the week of Feb. 1-5.

University of Utah

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to