Study identifies noncoding RNA involved in immune response and sepsis

February 01, 2021

When the body's immune response to an infection gets out of control, the result can be sepsis, a life-threatening condition in which an overwhelming inflammatory response can lead rapidly to failure of multiple organs and death.

In a new study, researchers at UC Santa Cruz have identified a long noncoding RNA (lncRNA) molecule that regulates the expression of pro-inflammatory genes in immune system cells called macrophages and affects the susceptibility of mice to septic shock.

This lncRNA, called GAPLINC, was previously studied for its role in cancer, but it turns out to be the most highly expressed lncRNA in macrophages, which play a central role in inflammation. Susan Carpenter, assistant professor of molecular, cell and developmental biology at UC Santa Cruz, said GAPLINC stood out when her lab performed RNA sequencing of human macrophages and their precursors, white blood cells called monocytes.

Subsequent experiments showed that reducing or eliminating GAPLINC led to enhanced expression of inflammatory genes in both mouse and human cells. Paradoxically, this effect protected mice from endotoxic shock and death in a mouse model of sepsis. The difference was dramatic, with all of the normal ("wildtype") mice dying within a day, while all of the mice in which GAPLINC was knocked out survived.

"Our hypothesis was that the knockout mice would do worse in a model of endotoxic shock, so we were surprised to find that they did much better," said Carpenter, the corresponding author of a paper on the new findings published February 1 in Proceedings of the National Academy of Sciences.

Noncoding RNAs are RNA molecules that are transcribed from the genome but are not translated into a protein, and lncRNA is the largest class of noncoding RNA. In recent years, scientists have identified thousands of lncRNAs in mammalian genomes that regulate gene expression in different biological processes. GAPLINC is one of the few examples of a lncRNA found in both humans and mice.

Apple Vollmers, a graduate student in Carpenter's lab and first author of the paper, said the team's RNA sequencing results showed that GAPLINC is highly expressed during the differentiation of monocytes into macrophages.

"We thought initially that it was involved in regulating differentiation, but when we depleted it, that turned on inflammatory genes," Vollmers said. "It's a low level of expression, so the genes are not turning on at the same level as when a macrophage is activated in response to a pathogen."

The mouse model of sepsis involves exposing mice to a component of gram-negative bacteria called lipopolysaccharide (LPS, also known as endotoxin), which is known to trigger septic shock in bacterial infections. Carpenter said starting from a low baseline level of inflammatory gene expression may make the inflammatory response to LPS less of a shock to the system. "Instead of going from zero to 100, you might go from 10 to 100, and we think that provides some protection, but we're not sure why," she said.

Macrophages are among the first cells involved in the body's response to any injury or infection. They are patrollers and first responders, circulating in the blood as monocytes and differentiating into macrophages that move to sites where they are needed to help fight infection or heal an injury.

"They help turn on inflammation, but they also play an important role in turning it off," Carpenter said.

The expression of GAPLINC gets turned on when monocytes differentiate into macrophages, and it gets turned down after the cells are exposed to LPS. "Something interesting is happening between those steps, where somehow modulating the expression of GAPLINC can be protective," Carpenter said.

In sepsis, the inflammatory response goes into overdrive as cells release a deluge of inflammatory proteins called cytokines. Cytokines are often produced in a cascade, as one cytokine stimulates its target cells to make additional cytokines. Uncontrolled cytokine production is often called a "cytokine storm." This process also triggers clotting, and blood clots then block the flow of oxygen-carrying blood to critical organs, leading to organ failure and death. Sepsis can also be triggered by viral infections and may be involved in severe cases of COVID-19.

"The biggest problem with sepsis is that it happens so fast, and once it gets going there are no good treatment options," Carpenter said.

A better understanding of the role of GAPLINC in controlling the inflammatory response and septic shock could lead to new opportunities for drug development to target sepsis.

"We are a long way from understanding how you would target this therapeutically, but at least we have identified a pathway to home in on," Carpenter said.
-end-
In addition to Carpenter and Vollmers, the coauthors of the paper include postdoctoral researcher Sergio Covarrubias; undergraduates Daisy Kuang, Aaron Shulkin, and Justin Iwuagwu; sequencing analyst Sol Katzman; assistant professor of biomolecular engineering Christopher Vollmers; and Ran Song and Edward Wakeland at the University of Texas Southwestern Medical Center. This work was funded by the National Institutes of Health. Apple Vollmers was supported by a Ford Foundation Predoctoral Fellowship and a Howard Hughes Medical Institute Gilliam Fellowship.

University of California - Santa Cruz

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.