Nav: Home

Protecting rice crops at no extra cost

February 02, 2017

A newly identified genetic mechanism in rice can be utilized to maintain resistance to a devastating disease, without causing the typical tradeoff - a decrease in grain yield, a new study reports. Rice blast is a serious fungal disease that can devastate rice crops. Yet, often genes that provide resistance to the pathogen compromise the yield of rice grains. Previously, researchers had identified a set of genes that enable high and durable resistance to the fungus. Here, Yiwen Deng explored these genes in greater detail, finding that PigmR was particularly effective, providing complete resistance to 50 rice blast variations. If PigmR is expressed while seeds are made, however, this hinders seed production and thus reduces yield, the authors report. They found that co-expression of another gene, PigmS, interferes with the resistance properties of PigmR. Intriguingly, in one strain of rice plants, PigmR was found to be expressed throughout the plant, while expression of PigmS was limited to the reproductive tissues, thus limiting the seed damage associated with PigmR. This site-specific suppression endows the plant with resistance to rice blast in its stem, stalk, leaves, without compromising yield. The researchers also identified specific amino acids that are involved in blocking the function of PigmR. These advancements could help boost protection of rice crops, without altering the rice production quantities.
-end-


American Association for the Advancement of Science

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.