Nav: Home

UW sleep research high-resolution images show how the brain resets during sleep

February 02, 2017

Madison, Wis. -- Striking electron microscope pictures from inside the brains of mice suggest what happens in our own brain every day: Our synapses - the junctions between nerve cells - grow strong and large during the stimulation of daytime, then shrink by nearly 20 percent while we sleep, creating room for more growth and learning the next day.

The four-year research project published today in Science offers a direct visual proof of the "synaptic homeostasis hypothesis" (SHY) proposed by Drs. Chiara Cirelli and Giulio Tononi of the Wisconsin Center for Sleep and Consciousness.

This hypothesis holds that sleep is the price we pay for brains that are plastic and able to keep learning new things.

When a synapse is repeatedly activated during waking, it grows in strength, and this growth is believed to be important for learning and memory. According to SHY, however, this growth needs to be balanced to avoid the saturation of synapses and the obliteration of neural signaling and memories. Sleep is believed to be the best time for this process of renormalization, since when asleep we pay much less attention to the external world and are free from the "here and now."

When synapses get stronger and more effective they also become bigger, and conversely they shrink when they weaken. Thus, Cirelli and Tononi reasoned that a direct test of SHY was to determine whether the size of synapses changes between sleep and wake. To do so, they used a method with extremely high spatial resolution called serial scanning 3-D electron microscopy.

The research itself was a massive undertaking, with many research specialists working for four years to photograph, reconstruct, and analyze two areas of cerebral cortex in the mouse brain. They were able to reconstruct 6,920 synapses and measure their size.

The team deliberately did not know whether they were analyzing the brain cells of a well-rested mouse or one that had been awake. When they finally "broke the code" and correlated the measurements with the amount of sleep the mice had during the six to eight hours before the image was taken, they found that a few hours of sleep led on average to an 18 percent decrease in the size of the synapses. These changes occurred in both areas of the cerebral cortex and were proportional to the size of the synapses.

The scaling occurred in about 80 percent of the synapses but spared the largest ones, which may be associated with the most stable memory traces.

"This shows, in unequivocal ultrastructural terms, that the balance of synaptic size and strength is upset by wake and restored by sleep," Cirelli says. "It is remarkable that the vast majority of synapses in the cortex undergo such a large change in size over just a few hours of wake and sleep.

Tononi adds, "Extrapolating from mice to humans, our findings mean that every night trillions of synapses in our cortex could get slimmer by nearly 20 percent."

The study was published today in Science along with research from Dr. Richard Huganir's laboratory at Johns Hopkins University in Baltimore. This study, using biochemical and molecular methods, confirms SHY's prediction that synapses undergo a process of scaling down during sleep, and identifies genes important for this process.
-end-
Tononi and Cirelli are professors of psychiatry in the University of Wisconsin-Madison School of Medicine and Public Health. The co-authors on the project include Drs. Luisa de Vivo, Michele Bellesi and William Marshall, all of the UW Department of Psychiatry, and Drs. Eric Bushong and Mark Ellisman from the University of California-San Diego. Their work is supported by the National Institutes of Health.

University of Wisconsin-Madison

Related Sleep Articles:

Baby sleeping in same room associated with less sleep, unsafe sleep habits
The American Academy of Pediatrics (AAP) recommends parents keep babies in the same room with them to sleep for the first year to prevent sudden infant death syndrome (SIDS).
Alternating skimpy sleep with sleep marathons hurts attention, creativity in young adults
Skimping on sleep, followed by 'catch-up' days with long snoozes, is tied to worse cognition -- both in attention and creativity -- in young adults, in particular those tackling major projects, Baylor University researchers have found.
Sleep trackers can prompt sleep problems
A researcher and clinician in the sleep disorders program in the Department of Behavioral Sciences at Rush University Medical Center and an associate professor at Rush University, Baron says use of these devices follows a pattern reflected in the title of the Sleep Medicine study: 'Orthosomnia: Are Some Patients Taking the Quantified Self Too Far?'
UW sleep research high-resolution images show how the brain resets during sleep
Striking electron microscope pictures from inside the brains of mice suggest what happens in our own brain every day: Our synapses -- the junctions between nerve cells -- grow strong and large during the stimulation of daytime, then shrink by nearly 20 percent while we sleep, creating room for more growth and learning the next day.
What is good quality sleep? National Sleep Foundation provides guidance
The National Sleep Foundation (NSF) recently released the key indicators of good sleep quality, as established by a panel of experts.
Homeless sleep less, more likely to have insomnia; sleep improvements needed
The homeless sleep less and are more likely to have insomnia and daytime fatigue than people in the general population, findings researchers believe suggest more attention needs to be paid to improving sleep for this vulnerable population, according to a research letter published online by JAMA Internal Medicine.
Losing sleep over discrimination? 'Everyday discrimination' may contribute to sleep problems
People who perceive more discrimination in daily life have higher rates of sleep problems, based on both subjective and objective measures, reports a study in Psychosomatic Medicine: Journal of Biobehavioral Medicine, the official journal of the American Psychosomatic Society.
Mouse mutants with sleep defects may shed light on the mysteries of sleep
The first unbiased genetic screen for sleep defects in mice has yielded two interesting mutants, Sleepy, which sleeps excessively, and Dreamless, which lacks rapid eye movement (REM) sleep.
Brain circuit that drives sleep-wake states, sleep-preparation behavior is identified
Stanford University School of Medicine scientists have identified a brain circuit that's indispensable to the sleep-wake cycle.
Recharge with sleep: Pediatric sleep recommendations promoting optimal health
For the first time, the American Academy of Sleep Medicine has released official consensus recommendations for the amount of sleep needed to promote optimal health in children and teenagers to avoid the health risks of insufficient sleep.

Related Sleep Reading:

Why We Sleep: Unlocking the Power of Sleep and Dreams
by Matthew Walker PhD (Author)

Go the F**k to Sleep
by Adam Mansbach (Author), Ricardo Cort├ęs (Illustrator)

Sleep Smarter: 21 Essential Strategies to Sleep Your Way to A Better Body, Better Health, and Bigger Success
by Shawn Stevenson (Author)

Twelve Hours' Sleep by Twelve Weeks Old: A Step-by-Step Plan for Baby Sleep Success
by Suzy Giordano (Author), Lisa Abidin (Author)

The Sleep Solution: Why Your Sleep is Broken and How to Fix It
by W. Chris Winter M.D. (Author)

Precious Little Sleep: The Complete Baby Sleep Guide for Modern Parents
by Alexis Dubief (Author)

Healthy Sleep Habits, Happy Child, 4th Edition: A Step-by-Step Program for a Good Night's Sleep
by Marc Weissbluth M.D. (Author)

Only to Sleep: A Philip Marlowe Novel
by Lawrence Osborne (Author)

Sleep: The Myth of 8 Hours, the Power of Naps, and the New Plan to Recharge Your Body and Mind
by Nick Littlehales (Author)

Dr Seuss's Sleep Book
by Dr. Seuss (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.