A fine-grained view of dust storms

February 02, 2021

A satellite-based dataset generated by KAUST researchers has revealed the dynamics of dust storm formation and movements over the last decade in the Arabian Peninsula. Analysis of this long-term dataset reveals the connection between the occurrence of extreme dust events and regional atmospheric conditions, a finding that could help improve weather forecasting and air-quality models.

Dust storms occur when strong winds lift tiny particles of sand into the atmosphere. These events often span several miles and can have an enormous impact on daily life, from damaging buildings and disrupting air traffic to triggering respiratory illnesses and other health problems.

The Arabian Peninsula is a global hotspot of extreme dust events, with storms occurring all year round, typically peaking in March and August. While previous studies that rely on ground-based measurements have explored how these dust storms form, few have captured in detail how they vary across the region.

"Comprehensive and continuous observations are needed to identify extreme dust events over the Arabian Peninsula," says lead author of the study, Harikishan Gandham.

"Ground-based networks do not provide enough information," explains Gandham. "We tried to fill this gap by analyzing long-term high-resolution dust data generated by satellite observations." Gandham and his team used satellite data to analyze extreme dust events that occurred in the Arabian Peninsula between 2003 and 2017. To identify and track dust storms, the researchers used state-of-the-art algorithms to determine where they formed, their frequency and duration, and their spatial extent.

The researchers found a link between intensifying Shamal winds in the north and the formation of extreme dust storms in the Arabian Peninsula. These strong winds transport fine particles from the surrounding desert to the region, leading to thick clouds of dust that can reach altitudes of up to four kilometers above sea level and last for three days or longer.

A total of 49 dust storms occurred in the Arabian Peninsula over 207 days during the 15-year study period -- these became more frequent from 2007 to their peak in 2012.

Following 2012, extreme dust events suddenly began to decline due to changing atmospheric conditions, such as heavier winter rainfall brought on by the development of a low-pressure trough in the Red Sea.

"This study generated and validated a much-needed long-term high-resolution dust aerosol dataset for the Arabian Peninsula and adjoining region," says co-author Ibrahim Hoteit.

"Compared to other global data products available, our high-resolution dataset enables more accurate study of the variability of dust events over our region."

King Abdullah University of Science & Technology (KAUST)

Related Sea Level Articles from Brightsurf:

Sea-level rise will have complex consequences
Rising sea levels will affect coasts and human societies in complex and unpredictable ways, according to a new study that examined 12,000 years in which a large island became a cluster of smaller ones.

From sea to shining sea: new survey reveals state-level opinions on climate change
A new report analyzing state-level opinions on climate change finds the majority of Americans believe in and want action on climate change--but factors like state politics and local climate play important roles.

UM researcher proposes sea-level rise global observing system
University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Shane Elipot proposes a new approach to monitoring global sea-level rise.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

Larger variability in sea level expected as Earth warms
A team of researchers from the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST) identified a global tendency for future sea levels to become more variable as oceans warm this century due to increasing greenhouse gas emissions.

Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.

As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.

Read More: Sea Level News and Sea Level Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.