Yale researchers develop injection to treat skin cancer

February 02, 2021

Yale researchers are developing a skin cancer treatment that involves injecting nanoparticles into the tumor, killing cancer cells with a two-pronged approach, as a potential alternative to surgery.

The results are published in the Proceedings of the National Academy of Sciences.

"For a lot of patients, treating skin cancer is much more involved than it would be if there was a way to effectively treat them with a simple procedure like an injection," said Dr. Michael Girardi, professor and vice chair of dermatology at Yale School of Medicine and senior author of the study. "That's always been a holy grail in dermatology -- to find a simpler way to treat skin cancers such as basal cell carcinoma and squamous cell carcinoma."

For the treatment, tumors are injected with polymer-based nanoparticles carrying a chemotherapy agent. Key to the treatment's success is that the nanoparticles are bioadhesive -- that is, they bind to the tumors and remain attached long enough to kill a significant number of the cancer cells.

"When you inject our nanoparticles into a tumor, it turns out that they're retained within that tumor very well," said co-author Mark Saltzman, the Goizueta Foundation Professor of Biomedical Engineering, Chemical and Environmental Engineering, and professor of physiology. "They accumulate and bind to the tumor matrix, so one single injection lasts for a very long time -- the particles stay there and slowly release the compounds. You need that to get rid of the lesion."

For comparison, the same drug was injected freely into tumors of control models without the nanoparticles. They found that the tumors were significantly more diminished when the drugs were delivered by nanoparticles.

Also critical to the therapy is that the treatment can be combined with an agent that stimulates the body's immune system.

"I call the phenomenon 'kill and thrill,'" Girardi said. "You don't want to just kill the cells and leave them there, you want to stimulate the immune system to clean up the mess and also react against cells that might not have been killed directly. So it's a two-pronged attack on the cancer."

In many cases, ridding tumors with an injection could eliminate the need for surgery, the researchers said. It may also then avoid potential wound infections and other complications. Additionally, some patients with other medical conditions are poor candidates for surgery.

An injection-based therapy would also mean that patients could have multiple tumors treated in a single visit.

"In these studies, we did just a single injection, and that's how we'd like it to work clinically," Saltzman said. "You go to a dermatologist, they see a lesion and inject into it, and it's gone and you don't have to come back."

Saltzman's lab, which specializes in nanoparticles, worked to optimize the particles' drug-carrying ability to deliver as much of the chemotherapy agent in a single dose as possible. Because the contents of the nanoparticle remain at the site of the tumor, the delivery system allows for the use of particularly powerful drugs. Conventional chemotherapy affects the entire body and can have severe side effects, so the toxicity of drugs is more limited.

Both Yale Cancer Center members, Girardi and Saltzman are working with the start-up company Stradefy Biosciences Inc., which plans to advance the technology's preclinical development and then conduct clinical trials.

"Mike and Mark have been doing outstanding science together for a number of years," said Brian R. Dixon, president and CEO of Stradefy. "It's really hard to beat that kind of team. We believe that their groundbreaking work is going to lead to truly helpful therapies for patients."
-end-
Other Yale investigators involved in the project included Jamie K. Hu, Hee-Won Suh, Munibah Qureshi, Julia Lewis, Sharon Yaqoob, Zoe Moscato, Sofia Griff, Alison Lee, and Em

Yale University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.