The morphological characteristics of precipitation areas affects precipitation intensity

February 02, 2021

New research suggests that the rate of rainfall within a storm system is linked to the structure and form of the precipitation area as seen on radar. This discovery relies heavily on the "morphology" of radar signatures, including shape (big, small), and size (high, short or plump, thin). Compared to buying diamonds, morphological characteristics are an important reference factor for pricing. Fascinated by "popcorn-shaped" clouds over the Tibetan Plateau, atmospheric scientists have been inspired to study the relationship between cloud shape, precipitation intensity, and the morphology of radar signatures.

"It is not easy to find the information we need from the abundant data," says Dr. CHEN Yilun from the University of Science and Technology of China (USTC) of CAS, the lead author of a precipitation area study recently published in Advances in Atmospheric Sciences. "It is necessary to develop an objective method to identify precipitation areas and definite its morphological characteristics."

A precipitation area, or precipitation object, is a system composed of spatially continuous precipitation pixels. Essentially, this is how a storm appears on radar. Areas sometimes look organized, such as the spiral belts, or rain bands, of tropical cyclones. More often, they show chaotic forms that are difficult to describe. That said, plentiful radar data in the Tibetan Plateau has led to important discoveries.

"Linear precipitation areas have the lowest rain rate, whereas square-shaped precipitation areas have the highest rain rate over the Tibetan Plateau," says Dr. CHEN. "This phenomenon is most significant over the eastern Tibetan Plateau."

Modern dual-polarization radar allows for raindrop size analysis and a vertical (3D) cross section of a storm. While traditional echoes were considered in this study, the vertical structure of the precipitation area is notably sensitive to both size and 3D morphology.

"The morphological characteristics of precipitation areas are closely related to the precipitation intensity," says Prof. FU Yunfei, a corresponding author in this study and professor of USTC. "It could potentially be used to forecast precipitation and verify numerical models."
-end-


University of Science and Technology of China

Related Tibetan Plateau Articles from Brightsurf:

Convection-permitting modelling improves simulated precipitation over the Tibetan Plateau
A China-UK research team explains the possible reasons for excessive precipitation over the TP in the mesoscale convection-parameterized models.

Denisovan DNA found in sediments of Baishiya Karst Cave on Tibetan Plateau
A joint research team from China, Germany and Australia has now reported their findings of Denisovan DNA from sediments of the Baishiya Karst Cave (BKC) on the Tibetan Plateau where the Xiahe mandible was found.

Fossil trees on Peru's Central Andean Plateau tell a tale of dramatic environmental change
The anatomy of plant fossils including an enormous tree that grew 10 million years ago in the now arid, high-elevation Central Andean Plateau calls current paleoclimate models into question, suggesting that the area was more humid than models predict.

First in situ radiation measurements 21 km up into the air over Tibetan Plateau
In situ vertical radiation measurements from the surface up to the upper troposphere and lower stratosphere (UTLS), about 10~22 km in altitude, are rare over the TP or even over a large territory of China.

The spatial consistency of summer rainfall variability between the Mongolian Plateau and North China
The regional differences and similarities of precipitation variability are hotspots in climate change research.

Geologists shed light on the tibetan plateau origin puzzle: an open-and-shut perspective
Earth's geographical surfaces have been formed over millions of years.

The Kerguelen oceanic plateau sheds light on the formation of continents
How did the continents form? Although to a certain extent this remains an open question, the oceanic plateau of the Kerguelen Islands may well provide part of the answer, according to a French-Australian team led by the Géosciences Environnement Toulouse laboratory (CNRS/Université Toulouse III-Paul Sabatier/IRD/CNES).

Tibetan antelope thrive at high altitudes using a juvenile form of blood oxygen transport
Adult Tibetan antelope have overcome oxygen deprivation on the high-altitude Tibetan Plateau through an unusual adaptation in which they permanently express a form of hemoglobin (the iron-containing oxygen transport protein in red blood cells) that other members of the cattle family only express as juveniles or when under extreme oxygen deprivation.

Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau
A study about grazing exclusion using fences on the Tibetan Plateau by a team of researchers from China, Australia and Japan recently published in Science Bulletin, and commented in the Editors' choice column of Science.

Why the 'uplift of the Tibetan plateau' is a myth
Spicer and colleagues combine stable isotope and fossil paleoaltimetry to chart the growth of Tibet, the Himalaya and the Hengduan mountains through time and show the plateau is young, less that 15 million years old, and evolved not just by the collision of India with Eurasia but through multiple earlier mountain-building events and the infilling of deep ancient lowlands hosting subtropical monsoon-adapted biotas.

Read More: Tibetan Plateau News and Tibetan Plateau Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.