Extreme UV laser shows generation of atmospheric pollutant

February 02, 2021

Hokkaido University scientists show that under laboratory conditions, ultraviolet light reacts with nitrophenol to produce smog-generating nitrous acid.

An advanced laser technique has allowed researchers to observe, in real-time, the decomposition of a pollutant into atmospheric nitrous acid, which plays a key role in the formation of ozone and photochemical smog. The technique, described by Hokkaido University researchers in The Journal of Physical Chemistry Letters, could be used in a wide range of applications.

Nitrophenols are a type of fine particulate matter found in the atmosphere that form as a result of fossil fuel combustion and from forest fires. It is hypothesised that light interacts with nitrophenols and breaks them down into nitrous acid; atmospheric nitrous acid is known to generate the hydroxyl radicals responsible for ozone formation. Too much ozone and nitrogen oxides lead to the formation of an atmospheric haze called photochemical smog, which can cause respiratory illnesses. Until now, there has been no evidence for the decomposition of nitrophenol into nitrous acid by sunlight.

Hokkaido University applied physicist Taro Sekikawa and colleagues developed a new probing technique to observe the process in real-time. They then compared their measurements with theoretical quantum chemistry calculations.

"Our study showed that irradiation of o-nitrophenol with sunlight is one of the direct causes of nitrous acid production in the atmosphere," says Sekikawa.

The team developed an advanced laser technique that involves exciting nitrophenol with a 400 nanometer-wavelength laser light and then shining very short, very fast pulses of ultraviolet light on it to see what happens. Specifically, they used extreme UV light, which has very short wavelengths, shone in femtoseconds, which last a millionth of a billionth of a second. The whole process measures the energy states and molecular changes that occur as the nitrophenol compound decomposes over time.

The scientists found that nitrous acid begins to form 374 femtoseconds after the nitrophenol is first excited by light. The decomposition process involves distortion of the shape of the nitrophenol molecule by light irradiation and changes in its energy states, ultimately leading to the formation of nitrous acid.

"Photoelectron spectroscopy with extreme ultraviolet light is expected to have a wide range of applications as a method for measuring chemical reactions," says Sekikawa. "It could be used, for example, to understand the mechanism by which ultraviolet rays inactivate viruses at the molecular level, and to understand other chemical reactions that take place in the atmosphere.
-end-


Hokkaido University

Related Ozone Articles from Brightsurf:

Investigating the causes of the ozone levels in the Valderejo Nature Reserve
The UPV/EHU's Atmospheric Research Group (GIA) has presented a database comprising over 60 volatile organic compounds (VOC) measured continuously over the last ten years in the Valderejo Nature Reserve (Álava, Basque Country).

FSU Research: Despite less ozone pollution, not all plants benefit
Policies and new technologies have reduced emissions of precursor gases that lead to ozone air pollution, but despite those improvements, the amount of ozone that plants are taking in has not followed the same trend, according to Florida State University researchers.

Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.

Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.

Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.

How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.

New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.

Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.

Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.

Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.

Read More: Ozone News and Ozone Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.