Researchers Determine Three Dimensional Structure Of Melatonin Producing Enzyme

February 02, 1999

Researchers from two NIH institutes have determined the three-dimensional structure of an enzyme that produces melatonin--a key hormone that regulates the body's internal clock. The accomplishment may lead to the eventual design of drugs to fight jet lag, to help shift workers adjust to variable schedules, and to combat depression.

The finding, appearing in the January issue of Molecular Cell, represents the first time that the structure of a protein involved in regulating the body's day/night rhythms has been determined.

The authors of the paper were Alison Burgess Hickman and David C. Klein, of the Laboratory of Developmental Neurobiology at the National Institute of Child Health and Human Development (NICHD) and Fred Dyda, of the Laboratory of Molecular Biology at the National Institute of Diabetes and Digestive and Kidney Diseases.

Briefly, Dr. Klein explained, melatonin is made in the pineal gland of the brain from the brain chemical, serotonin, with the help of two enzymes: arylalkylamine N-acetyl transferase (AA-NAT) and hydroxyindole-O-methyl transferase (HIOMT). AA-NAT appears to be the "melatonin rhythm enzyme," because a large increase in the activity of AA-NAT is responsible for the high levels of melatonin found in the brain and in the bloodstream at night.

Similarly, low levels of melatonin formed during the day reflect low levels of this enzyme. This difference in day and night levels of melatonin is important for setting the body's circadian clock.

In the current paper, the three NIH researchers determined the three dimensional structure of AA-NAT. This advance will allow researchers to more precisely determine how melatonin is produced in response to darkness, and how production is switched off in response to light. In the Molecular Cell paper, the investigators wrote that such knowledge may, in turn, lead to the eventual design of drugs to that would prevent AA-NAT from being produced or destroyed. A drug interfering with AA-NAT production might promote wakefulness, and a drug preventing the enzyme from being degraded might enhance sleep. Similarly, a drug that inhibits AA-NAT might provide a way to elevate brain levels of serotonin, thereby providing a treatment for serotonin-related diseases, such as depression.

NIH/Eunice Kennedy Shriver National Institute of Child Health and Human Development

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to