Scientists find ozone-destroying molecule

February 03, 2004

WASHINGTON - For years, scientists theorized that a molecule called ClOOCl in the stratosphere played a key role in destroying ozone. Now, using measurements from a NASA aircraft laboratory flying over the Arctic, Harvard scientist Rick Stimpfle and colleagues observed the molecule for the first time. They report their discovery in the Journal of Geophysical Research-Atmospheres, published by the American Geophysical Union.

"We knew from observations dating from 1987, that the high ozone loss was linked with high [levels of] chlorine monoxide, but we had never actually detected the ClOOCl before," Stimpfle said in an interview. The common name atmospheric scientists use for ClOOCl, he said, is "chlorine dimer"--two identical chlorine-based molecules, ClO or chlorine monoxide--bonded together. The rare dimer exists only in the particularly cold stratosphere over polar regions where chlorine monoxide levels are relatively high. "Most of the chlorine in the stratosphere," Stimpfle adds, "continues to come from human-induced sources."

ClOOCl triggers ozone destruction, he explains, in three basic steps:

"You are now back to where you started with respect to the ClOOCl molecule," Stimpfle says, "but in the process you have converted two ozone molecules into three oxygen molecules. This is the definition of ozone loss."

These results were acquired during a joint US-European science mission, SOLVE/THESEO-2000, based in Kiruna, Sweden, from November 1999 to March 2000. A NASA ER-2 aircraft--essentially a U2--flew into Russian air space for the first time with the cooperation of Russian authorities, Stimpfle says, for the purpose of collecting scientific data of interest to the world community. The instrument used to measure ClOOCl was designed to detect several important inorganic chlorine species and was housed in a wing pod of the ER-2. This work was funded by the NASA Upper Atmospheric Research Program.
-end-


American Geophysical Union

Related Stratosphere Articles from Brightsurf:

International team tracks record-setting smoke cloud from Australian wildfires
Researchers with the University of Saskatchewan's Institute of Space and Atmospheric Studies are part of a global team that has found that the smoke cloud pushed into the stratosphere by last winter's Australian wildfires was three times larger than anything previously recorded.

Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.

Snowmageddon warnings in North America come from tropics more than Arctic stratosphere
Scientists conducted the first ever study to identify how the four main winter weather patterns in the US and Canada behave depending on the strength of the stratospheric polar vortex.

Reevaluating the impacts of smoke plumes aloft, based on the 2017 Pacific Northwest wildfires
Extensive wildfires in the Pacific Northwest in the summer of 2017 unleashed a vast plume of smoke that ascended high into the stratosphere, persisted for more than eight months and provided researchers a rare opportunity to evaluate current models of smoke ascent.

Persistent plume
Thunderstorms generated by a group of giant wildfires in 2017 injected a small volcano's worth of aerosol into the stratosphere, creating a smoke plume that lasted for almost nine months.

Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.

2018's biggest volcanic eruption of sulfur dioxide
The Manaro Voui volcano on the island of Ambae in the nation of Vanuatu in the South Pacific Ocean made the 2018 record books.

Extratropical volcanoes influence climate more than assumed
The eruption of Mount Pinatubo in 1991 had a significant impact on climate, decreasing global mean temperature by about 0.5°C.

The ozone layer continues to thin
The vital ozone layer has continued to deplete in recent years over the densely populated mid-latitudes and tropics, while it is recovering at the poles.

Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.

Read More: Stratosphere News and Stratosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.