Nav: Home

Plant scientists at CSHL demonstrate new means of boosting maize yields

February 03, 2013

Cold Spring Harbor, NY - A team of plant geneticists at Cold Spring Harbor Laboratory (CSHL) has successfully demonstrated what it describes as a "simple hypothesis" for making significant increases in yields for the maize plant.

Called corn by most people in North America, modern variants of the Zea mays plant are among the indispensable food crops that feed billions of the planet's people. As global population soars beyond 6 billion and heads for an estimated 8 to 9 billion by mid-century, efforts to boost yields of essential food crops takes on ever greater potential significance.

The new findings obtained by CSHL Professor David Jackson and colleagues, published online today in Nature Genetics, represent the culmination of over a decade of research and creative thinking on how to perform genetic manipulations in maize that will have the effect of increasing the number of its seeds - which most of us call kernels.

Plant growth and development depend on structures called meristems - reservoirs in plants that consist of the plant version of stem cells. When prompted by genetic signals, cells in the meristem develop into the plant's organs - leaves and flowers, for instance. Jackson's team has taken an interest in how quantitative variation in the pathways that regulate plant stem cells contribute to a plant's growth and yield.

"Our simple hypothesis was that an increase in the size of the inflorescence meristem - the stem-cell reservoir that gives rise to flowers and ultimately, after pollination, seeds - will provide more physical space for the development of the structures that mature into kernels."

Dr. Peter Bommert, a former postdoctoral fellow in the Jackson lab, performed an analytical technique on several maize variants that revealed what scientists call quantitative trait loci (QTLs): places along the chromosomes that "map" to specific complex traits such as yield. The analysis pointed to a gene that Jackson has been interested in since 2001, when he was first to clone it: a maize gene called FASCIATED EAR2 (FEA2).

Not long after cloning the gene, Jackson had a group of gifted Long Island high school students, part of a program called Partners for the Future, perform an analysis of literally thousands of maize ears. Their task was to meticulously count the number of rows of kernels on each ear. It was part of a research project that won the youths honors in the Intel Science competition. Jackson, meantime, gained important data that now has come to full fruition.

The lab's current research has now shown that by producing a weaker-than-normal version of the FEA2 gene - one whose protein is mutated but still partly functional -- it is possible, as Jackson postulated, to increase meristem size, and in so doing, get a maize plant to produce ears with more rows and more kernels.

How many more? In two different crops of maize variants that the Jackson team grew in two locations with weakened versions of FEA2, the average ear had 18 to 20 rows and up to 289 kernels - as compared with wild-type versions of the same varieties, with 14 to 16 rows and 256 kernels. Compared with the latter figure, the successful FEA2 mutants had a kernel yield increase of some 13%.

"We were excited to note this increase was accomplished without reducing the length of the ears or causing fasciation - a deformation that tends to flatten the ears," Jackson says. Both of those characteristics, which can sharply lower yield, are prominent when FEA2 is completely missing, as the team's experiments also demonstrated.

Teosinte, the humble wild weed that Mesoamericans began to modify about 7000 years ago, beginning a process that resulted in the domestication of maize, makes only 2 rows of kernels; elite modern varieties of the plant can produce as many as 20.

A next step in the research is to cross-breed the "weak" FEA2 gene variant, or allele, associated with higher kernel yield with the best maize lines used in today's food crops to ask if it will produce a higher-yield plant.
-end-
"Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus" appears online in Nature Genetics on February 3, 2013. The authors are: Peter Bommert, Namiko Satoh Nagasawa and David Jackson. The paper can be viewed at: http://www.nature.com/ng/journal/vaop/ncurrent/index.html

The research described in this release was supported in part by funding from the U.S. Department of Agriculture (grant NRICGP 2003-3504-13277); the National Science Foundation Plant Genome Program (grant DBI-0604923); and the German Science Society.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Cold Spring Harbor Laboratory

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem cells are the repair cells of your body.  When there aren’t enough of them, or they aren’t working properly, chronic diseases can manifest and persist. From industry leaders, sport stars, and Hollywood icons to thousands of everyday, ordinary people, stem cell therapy has helped when standard medicine failed. Many of them had lost hope. These are their stories.

Neil H Riordan, author of MSC: Clinical Evidence Leading Medicine’s Next Frontier, the definitive textbook on clinical stem cell therapy, brings you an easy-to-read book about how and why stem cells work,... View Details


Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Stem Cells: An Insider's Guide is an exciting new book that takes readers inside the world of stem cells guided by international stem cell expert, Dr. Paul Knoepfler. Stem cells are catalyzing a revolution in medicine. The book also tackles the exciting and hotly debated area of stem cell treatments that are capturing the public's imagination. In the future they may also transform how we age and reproduce. However, there are serious risks and ethical challenges, too. The author's goal with this insider's guide is to give readers the information needed to distinguish between the... View Details


Stem Cells: A Very Short Introduction
by Jonathan Slack (Author)

Embryonic stem cells have been hot-button topics in recent years, generating intense public interest as well as much confusion and misinformation. In this Very Short Introduction, leading authority Jonathan Slack offers a clear and informative overview of stem cells--what they are, what scientists do with them, what stem cell therapies are available today, and how they might be used in the future. Slack explains the difference between embryonic stem cells, which exist only in laboratory cultures, and tissue-specific stem cells, which exist in our bodies, and he discusses how... View Details


Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

The first authoritative yet accessible guide to this controversial topic

Stem Cell Research For Dummies offers a balanced, plain-English look at this politically charged topic, cutting away the hype and presenting the facts clearly for you, free from debate. It explains what stem cells are and what they do, the legalities of harvesting them and using them in research, the latest research findings from the U.S. and abroad, and the prospects for medical stem cell therapies in the short and long term.

Explains the differences between adult stem cells and embryonic/umbilical... View Details


The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

The book describes the journey into the growing arena of clinical stem cell therapy by highlighting not only the road that brought a team of physicians together but also real stories from a number of their patients that were given their health back through the magic of stem cell therapy. Your fat is loaded with stem cells that can be used now to treat and reverse a large number of inflammatory and degenerative conditions. Most people have no idea that these magical cells actually exist right within our bodies. They think that they must wait until Big Pharma or a university PhD manufactures... View Details


Stem Cells Are Everywhere
by Irv Weissman MD (Author)

An engaging introduction to stem cells for young scientists
 
How do you heal when you cut your skin or break a bone? How does your body keep making new blood or brain cells, or even second teeth? How does a plant keep growing larger? The answers lie in stem cells, which are found in every growing plant and animal. Keeping the subject simple enough for young readers, a pioneer of stem cell research explains cells, tissues, normal growth, what can go wrong, and how to fix it. View Details


Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells: A Short Course is a comprehensive text for students delving into the rapidly evolving discipline of stem cell research. Comprised of eight chapters, the text addresses all of the major facets and disciplines related to stem cell biology and research. A brief history of stem cell research serves as an introduction, followed by coverage of stem cell fundamentals; chapters then explore embryonic and fetal amniotic stem cells, adult stem cells, nuclear reprogramming, and cancer stem cells. The book concludes with chapters on stem cell applications, including the role of stem... View Details


Stem Cells: Promise and Reality
by Lygia V Pereira (Author)

Stem Cells: Promises and Reality will tell you everything you have always wanted to know about stem cells, but could not understand the field from elsewhere. Stem cells are the great therapeutic promise of the century, and this evolving field of research and medicine brings with it many legal, ethical and psychological issues that must be discussed by society as a whole. Written so as to be accessible to general readers as well as specialists, this book explains what stem cells are, and the different aspects of stem cell research and applications. The book will enable the reader to understand... View Details


Essentials of Stem Cell Biology, Third Edition
by Robert Lanza (Editor), Anthony Atala (Editor)

First developed as an accessible abridgement of the successful Handbook of Stem Cells, Essentials of Stem Cell Biology serves the needs of the evolving population of scientists, researchers, practitioners, and students embracing the latest advances in stem cells. Representing the combined effort of 7 editors and more than 200 scholars and scientists whose pioneering work has defined our understanding of stem cells, this book combines the prerequisites for a general understanding of adult and embryonic stem cells with a presentation by the world's experts of the latest... View Details


Stem Cells: Scientific Facts and Fiction
by Christine Mummery (Author), Anja van de Stolpe (Author), Bernard Roelen (Author), Hans Clevers (Author)

Recent advances in the fields of medicine and technology have led to the development of stem cell therapy. A stem cell is a cell that has the potential to develop into many different types of cell in the body. It has the ability to divide and copy itself and at least one other specialized type of cell.

Stem Cells was written to provide information about the development of stem cell therapy, which can be used in the fields of research and medicine. The main goal of the book is to provide readers with an overview of the scientific facts about stem cells and its promising... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."