Greenland's fastest glacier reaches record speeds

February 03, 2014

Jakobshavn Isbræ (Jakobshavn Glacier) is moving ice from the Greenland ice sheet into the ocean at a speed that appears to be the fastest ever recorded. Researchers from the University of Washington and the German Space Agency (DLR) measured the dramatic speeds of the fast-flowing glacier in 2012 and 2013. The results are published today in The Cryosphere, an open access journal of the European Geosciences Union (EGU).

"We are now seeing summer speeds more than 4 times what they were in the 1990s on a glacier which at that time was believed to be one of the fastest, if not the fastest, glacier in Greenland," says Ian Joughin, a researcher at the Polar Science Center, University of Washington and lead-author of the study.

In the summer of 2012 the glacier reached a record speed of more than 17 kilometres per year, or over 46 metres per day. These flow rates are unprecedented: they appear to be the fastest ever recorded for any glacier or ice stream in Greenland or Antarctica, the researchers say.

They note that summer speeds are temporary, with the glacier flowing more slowly over the winter months. But they add that even the annually averaged speedup over the past couple of years is nearly 3 times what it was in the 1990s.

This speedup of Jakobshavn Isbræ means that the glacier is adding more and more ice to the ocean, contributing to sea-level rise. "We know that from 2000 to 2010 this glacier alone increased sea level by about 1 mm. With the additional speed it likely will contribute a bit more than this over the next decade," explains Joughin.

Jakobshavn Isbræ, which is widely believed to be the glacier that produced the large iceberg that sank the Titanic in 1912, drains the Greenland ice sheet into a deep ocean fjord on the coast of the island. At its calving front, where the glacier effectively ends as it breaks off into icebergs, some of the ice melts while the rest is pushed out, floating into the ocean. Both of these processes contribute about the same amount to sea-level rise from Greenland.

As the Arctic region warms, Greenland glaciers such as Jakobshavn Isbræ have been thinning and calving icebergs further and further inland. This means that, even though the glacier is flowing towards the coast and carrying more ice into the ocean, its calving front is actually retreating. In 2012 and 2013, the front retreated more than a kilometre further inland than in previous summers, the scientists write in the new The Cryosphere study.

In the case of Jakobshavn Isbræ, the thinning and retreat coincides with an increase in speed. The calving front of the glacier is now located in a deeper area of the fjord, where the underlying rock bed is about 1300 metres below sea level, which the scientists say explains the record speeds it has achieved. "As the glacier's calving front retreats into deeper regions, it loses ice - the ice in front that is holding back the flow - causing it to speed up," Joughin clarifies.

The team used satellite data to measure the speed of the glacier as part of US National Science Foundation (NSF) and NASA studies. "We used computers to compare pairs of images acquired by the German Space Agency's (DLR) TerraSAR-X satellites. As the glacier moves we can track changes between images to produce maps of the ice flow velocity," says Joughin.

The researchers believe Jakobshavn Isbræ is in an unstable state, meaning it will continue to retreat further inland in the future. By the end of this century, its calving front could retreat as far back as the head of the fjord through which the glacier flows, about 50 km upstream from where it is today.
-end-
Please mention the name of the publication (The Cryosphere) if reporting on this story and, if reporting online, include a link to the paper or to the journal website.

European Geosciences Union

Related Sea Level Articles from Brightsurf:

Sea-level rise will have complex consequences
Rising sea levels will affect coasts and human societies in complex and unpredictable ways, according to a new study that examined 12,000 years in which a large island became a cluster of smaller ones.

From sea to shining sea: new survey reveals state-level opinions on climate change
A new report analyzing state-level opinions on climate change finds the majority of Americans believe in and want action on climate change--but factors like state politics and local climate play important roles.

UM researcher proposes sea-level rise global observing system
University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Shane Elipot proposes a new approach to monitoring global sea-level rise.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

Larger variability in sea level expected as Earth warms
A team of researchers from the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST) identified a global tendency for future sea levels to become more variable as oceans warm this century due to increasing greenhouse gas emissions.

Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.

As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.

Read More: Sea Level News and Sea Level Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.