Genetic function discovered that could offer new avenue to cancer therapies

February 03, 2014

CORVALLIS, Ore. - Researchers at Oregon State University have discovered a genetic function that helps one of the most important "tumor suppressor" genes to do its job and prevent cancer.

Finding ways to maintain or increase the effectiveness of this gene - called Grp1-associated scaffold protein, or Grasp - could offer an important new avenue for human cancer therapies, scientists said.

The findings were just published in Photochemical and Photobiological Sciences, a journal of the Royal Society of Chemistry, by researchers from OSU and Oregon Health & Science University. The work was supported by the National Institute of Environmental Health Sciences.

The Grasp gene was studied in the skin of mice in this research, but is actually expressed at the highest levels in the brain, heart and lung, studies have shown. It appears to play a fundamental role in the operation of the p53 tumor suppressor gene, which is a focus of much modern cancer research.

The p53 gene is involved in repair of DNA damage and, if the damage is too great, causing a mutated cell to die before it can cause further problems, up to and including cancer. Dysfunction of p53 genetic pathways have been linked to more than half of all known cancers - particularly skin, esophageal, colon, pancreatic, lung, ovarian, and head and neck cancers.

"DNA mutations occur constantly in our bodies just by ordinary stresses, something as simple as exposure to sunlight for a few seconds," said Mark Leid, professor of pharmacology and associate dean for research in the OSU College of Pharmacy, and one of the lead authors on this study.

"Just as constantly, the p53 gene and other tumor suppressors are activated to repair that damage," Leid said. "And in cases where the damage is too severe to be repaired, p53 will cause the apoptosis, or death of the mutated cell. Almost all of the time, when they are working right, these processes prevent the formation of cancers."

But the activity and function of p53 can sometimes decline or fail, Leid said, and allow development of cancer. Promising approaches to cancer therapy are now based on activating or stimulating the p53 protein to do its job.

The new study has found that the Grasp gene is significantly involved in maintaining the proper function of p53. When "Grasp" is not being adequately expressed, the p53 protein that has entered the cell nucleus to either repair or destroy the cell comes back out of the nucleus before its work is finished.

"It appears that a primary function of Grasp is to form sort of a halo around the nucleus of a damaged skin cell, and act as kind of a plug to keep the p53 cell inside the nucleus until its work is done," Leid said. "A drug that could enhance Grasp function might also help enhance the p53 function, and give us a different way to keep this important tumor suppressor working the way that it is supposed to.

"This could be important," he said.

OSU experts created laboratory mice that lacked the Grasp gene, and so long as the mice were reared in a perfect environment, they developed normally. But when they were exposed to even a mild environmental stress - ultraviolet light similar to moderate sun exposure - they began to develop cellular abnormalities much more rapidly than ordinary mice. Most significantly, mutated skin cells did not die as they should have.

In normal mice, the same moderate light exposure caused a rapid increase in expression of the Grasp gene, allowing the p53 protein to stay in the nucleus and normal protective mechanisms to do their work.

Most current cancer therapies related to the p53 tumor suppression process are directed toward activating the p53 protein, Leid said. A therapy directed toward improving the Grasp gene function would be a different approach toward the same goal, he said, and might improve the efficacy of treatment.
-end-
Editor's Note: The study this story is based on is available online: http://rsc.li/1fcWMim

Oregon State University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.