The future of holographic video

February 03, 2015

WASHINGTON D.C., February 3, 2015 -- Holographic video displays, featuring three-dimensional images, are about to "go large" and become a lot more affordable at the same time, thanks to the work of a team of Brigham Young University (BYU) researchers and their collaborators at Massachusetts Institute of Technology (MIT).

It's all about manipulating light. Three of the primary methods include: reflection, refraction and diffraction. In this case, diffraction is the key, and essentially enables lines -- almost any type -- to bend and filter light.

In the journal Review of Scientific Instruments, from AIP Publishing, the team reports using surface acoustic waves as a dynamic pattern of lines to control light's angle and color composition.

How does it work? The magic happens on the surface of a special crystal called lithium niobate (LiNbO3), which boasts excellent optical properties. Beneath the surface of the LiNbO3, microscopic channels, or "waveguides," are created to confine light passing through. A metal electrode is then deposited onto each waveguide, which can produce surface acoustic waves.

The resulting frequency division of color enables a new type of color display. This means that "for a wavelength display, we don't need to rely on color filter wheels or dedicated red and blue pixels," explained Daniel E. Smalley, assistant professor of electrical engineering at BYU, who first reported an advance in this realm in Nature in 2013, while he was a graduate student working at MIT with his advisor V. Michael Bove.

Instead of a color wheel, any color combination is possible with their approach simply by altering the frequency of the signal sent to the "white waveguide pixel." In other words, Smalley said, "we can color the output of our display by 'coloring' the frequencies of the drive signal."

"As a bonus, this interaction also rotates the polarization of the signal light so that we can use a polarizer to eliminate any noise in the system," he added.

In terms of applications, the team's technology adapts and combines techniques from telecom and integrated optics in a way that makes it much less expensive than previous approaches. "We can use this technology to make simple and inexpensive color waveguide displays -- including inexpensive holographic video displays," Smalley pointed out. "This can drop the cost of a holographic video display from tens of thousands of dollars to less than a thousand."

Holograms are meant to be large. Now that there's a simple and inexpensive color display technology, Smalley and colleagues are working on ways to use it to create large holographic video displays -- on the scale of room-sized displays.
-end-
The article, "Frequency Division Color Characterization Apparatus for Anisotropic Leaky Mode Light Modulators," is authored by Andre Henrie, Benjamin Haymore, and Daniel E. Smalley. It appears in the journal Review of Scientific Instruments on February 3, 2015 (DOI: 10.1063/1.4906329). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/rsi/86/2/10.1063/1.4906329

ABOUT THE JOURNAL

The journal Review of Scientific Instruments, which is produced by AIP Publishing, presents innovation in instrumentation and methods across disciplines. See: http://rsi.aip.org/

American Institute of Physics

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.