Nav: Home

No proof that radiation from X rays and CT scans causes cancer

February 03, 2016

MAYWOOD, Il. - The widespread belief that radiation from X rays, CT scans and other medical imaging can cause cancer is based on an unproven, decades-old theoretical model, according to a study published in the American Journal of Clinical Oncology.

The model, known as linear no-threshold (LNT), is used to estimate cancer risks from low-dose radiation such as medical imaging. But risk estimates based on this model "are only theoretical and, as yet, have never been conclusively demonstrated by empirical evidence," corresponding author James Welsh, MD and colleagues write. Use of the LNT model drives unfounded fears and "excessive expenditures on putative but unneeded and wasteful safety measures."

Dr. Welsh is a Loyola University Medical Center radiation oncologist and a professor in the Department of Radiation Oncology of Loyola University Chicago Stritch School of Medicine.

The LNT model dissuades many physicians from using appropriate imaging techniques and "discourages many in the public from getting proper and needed imaging, all in the name of avoiding any radiation exposure," Dr. Welsh and colleagues write.

The authors reexamined the original studies, dating back more than 70 years, which led to adoption of the LNT model. This reappraisal found that the data reported in those studies do not actually support the LNT model.

In the LNT model, the well-established cancer-causing effects of high doses of radiation are extended downward in a straight line to very low doses. The LNT model assumes there is no safe dose of radiation, no matter how small. However, the human body has evolved the ability to repair damage from low-dose radiation that naturally occurs in the environment.

The LNT model dates to studies, conducted in the 1940s, of fruit flies exposed to various doses of radiation. The scientists who conducted those studies concluded there is no safe level of radiation, thus giving rise to the LNT model that is used to this day. But their conclusion was unwarranted because their experiments had not been done at truly low doses. A study exposing fruit flies to low-dose radiation wasn't conducted until 2009, and this study did not support the LNT model.

Studies of atomic bomb survivors and other epidemiological studies of human populations have never conclusively demonstrated that low-dose radiation exposure can cause cancer.

Any claim that low-dose radiation from medical imaging procedures is known to cause cancer "should be vigorously challenged, because it serves to alarm and perhaps harm, rather than educate," Dr. Welsh and colleagues write.

The authors conclude the LNT model "should finally and decisively be abandoned."

The study is titled "The birth of the illegitimate linear no-threshold model - an invalid paradigm for estimating risk following low-dose radiation exposure."

In addition to Dr. Welsh, co-authors are Jeffry Siegel, PhD, president and CEO of Nuclear Physics Enterprises (first author); Charles Pennington of NAC International and Bill Sacks, MD, PhD, emeritus medical officer in the FDA Center for Devices and Radiological Health.
-end-


Loyola University Health System

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.