Nav: Home

Galactic center's gamma rays unlikely to originate from dark matter, evidence shows

February 03, 2016

Bursts of gamma rays from the center of our galaxy are not likely to be signals of dark matter but rather other astrophysical phenomena such as fast-rotating stars called millisecond pulsars, according to two new studies, one from a team based at Princeton University and the Massachusetts Institute of Technology and another based in the Netherlands.

Previous studies suggested that gamma rays coming from the dense region of space in the inner Milky Way galaxy could be caused when invisible dark matter particles collide. But using new statistical analysis methods, the two research teams independently found that the gamma ray signals are uncharacteristic of those expected from dark matter. Both teams reported the finding in the journal Physical Review Letters this week.

"Our analysis suggests that what we are seeing is evidence for a new astrophysical source of gamma rays at the center of the galaxy," said Mariangela Lisanti, an assistant professor of physics at Princeton. "This is a very complicated region of the sky and there are other astrophysical signals that could be confused with dark matter signals."

The center of the Milky Way galaxy is thought to contain dark matter because it is home to a dense concentration of mass, including dense clusters of stars and a black hole. A conclusive finding of dark matter collisions in the galactic center would be a major step forward in confirming our understanding of our universe. "Finding direct evidence for these collisions would be interesting because it would help us understand the relationship between dark matter and ordinary matter," said Benjamin Safdi, a postdoctoral researcher at MIT who earned his Ph.D. in 2014 at Princeton.

To tell whether the signals were from dark matter versus other sources, the Princeton/MIT research team turned to image-processing techniques. They looked at what the gamma rays should look like if they indeed come from the collision of hypothesized dark matter particles known as weakly interacting massive particles, or WIMPs. For the analysis, Lisanti, Safdi and Samuel Lee, a former postdoctoral research fellow at Princeton who is now at the Broad Institute, along with colleagues Wei Xue and Tracy Slatyer at MIT, studied images of gamma rays captured by NASA's Fermi Gamma-ray Space Telescope, which has been mapping the rays since 2008.

Dark matter particles are thought to make up about 85 percent of the mass in the universe but have never been directly detected. The collision of two WIMPs, according to a widely accepted model of dark matter, causes them to annihilate each other to produce gamma rays, which are the highest-energy form of light in the universe.

According to this model, the high-energy particles of light, or photons, should be smoothly distributed among the pixels in the images captured by the Fermi telescope. In contrast, other sources, such as rotating stars known as pulsars, release bursts of light that show up as isolated, bright pixels.

The researchers applied their statistical analysis method to images collected by the Fermi telescope and found that the distribution of photons was clumpy rather than smooth, indicating that the gamma rays were unlikely to be caused by dark matter particle collisions.

Exactly what these new sources are is unknown, Lisanti said, but one possibility is that they are very old, rapidly rotating stars known as millisecond pulsars. She said it would be possible to explore the source of the gamma rays using other types of sky surveys involving telescopes that detect radio frequencies.

Douglas Finkbeiner, a professor of astronomy and physics at Harvard University who was not directly involved in the current study, said that although the finding complicates the search for dark matter, it leads to other areas of discovery. "Our job as astrophysicists is to characterize what we see in the universe, not get some predetermined, wished-for outcome. Of course it would be great to find dark matter, but just figuring out what is going on and making new discoveries is very exciting."

According to Christoph Weniger from the University of Amsterdam and lead author of the Netherlands-based study, the finding is a win-win situation: "Either we find hundreds or thousands of millisecond pulsars in the upcoming decade, shedding light on the history of the Milky Way, or we find nothing. In the latter case, a dark matter explanation for the gamma ray excess will become much more obvious."
-end-
Funding for the Princeton/MIT research came from the U.S. Department of Energy under grant Contract Numbers DE-SC00012567, DE-SC0013999 and DE-SC0007968, and from the National Science Foundation under grant PHY-1066293 to the Aspen Center for Physics.

Princeton University

Related Dark Matter Articles:

Does dark matter annihilate quicker in the Milky Way?
Researchers at the Tata Institute of Fundamental Research in Mumbai have proposed a theory that predicts how dark matter may be annihilating much more rapidly in the Milky Way, than in smaller or larger galaxies and the early Universe.
Origin of Milky Way's hypothetical dark matter signal may not be so dark
A mysterious gamma-ray glow at the center of the Milky Way is most likely caused by pulsars.
A new look at the nature of dark matter
A new study suggests that the gravitational waves detected by the LIGO experiment must have come from black holes generated during the collapse of stars, and not in the earliest phases of the Universe.
Dark matter may be smoother than expected
Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought.
Supercomputer comes up with a profile of dark matter
In the search for the mysterious dark matter, physicists have used elaborate computer calculations to come up with an outline of the particles of this unknown form of matter.
Mapping the 'dark matter' of human DNA
Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome.
Reconciling dwarf galaxies with dark matter
Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe.
Did gravitational wave detector find dark matter?
When an astronomical observatory detected two black holes colliding in deep space, scientists celebrated confirmation of Einstein's prediction of gravitational waves.
Dark matter does not contain certain axion-like particles
Researchers at Stockholm University are getting closer to corner light dark-matter particle models.
SDU researchers present a new model for what dark matter might be
There are indications that we might never see the universe's mysterious dark matter.

Related Dark Matter Reading:

Dark Matter: A Novel
by Blake Crouch (Author)

A mindbending, relentlessly surprising thriller from the author of the bestselling Wayward Pines trilogy.

“Are you happy with your life?”

 
Those are the last words Jason Dessen hears before the masked abductor knocks him unconscious.
 
Before he awakens to find himself strapped to a gurney, surrounded by strangers in hazmat suits.
 
Before a man Jason’s never met smiles down at him and says, “Welcome back, my friend.” 
 
In this world he’s woken up to, Jason’s life is not the one he knows. His wife is not his wife.... View Details


Dark Matters: On the Surveillance of Blackness
by Simone Browne (Author)

In Dark Matters Simone Browne locates the conditions of blackness as a key site through which surveillance is practiced, narrated, and resisted. She shows how contemporary surveillance technologies and practices are informed by the long history of racial formation and by the methods of policing black life under slavery, such as branding, runaway slave notices, and lantern laws. Placing surveillance studies into conversation with the archive of transatlantic slavery and its afterlife, Browne draws from black feminist theory, sociology, and cultural studies to analyze texts as diverse as... View Details


Dark Matter: A Century of Speculative Fiction from the African Diaspora
by Sheree Renée Thomas (Editor)

This volume introduces black science fiction, fantasy, and speculative fiction writers to the generations of readers who have not had the chance to explore the scope and diversity among African-American writers. View Details


Dark Matter and the Dinosaurs: The Astounding Interconnectedness of the Universe
by Lisa Randall (Author)

“A cracking read, combining storytelling of the highest order with a trove of information. . . . What’s remarkable is that it all fits together.”—Wall Street Journal

“Successful science writing tells a complete story of the ‘how’—the methodical marvel building up to the ‘why’—and Randall does just that.”—New York Times Book Review

“[Randall] is a lucid explainer, street-wise and informal. Without jargon or mathematics, she steers us through centuries of sometimes tortuous astronomical... View Details


Dark Matter
by Blake Crouch (Author)

fiction View Details


Dark Matter: Reading the Bones
by Sheree R. Thomas (Author)

Dark Matter is the first and only series to bring together the works of black SF and fantasy writers. The first volume was featured in the "New York Times," which named it a Notable Book of the Year. View Details


Sailing the Wine-Dark Sea: Why the Greeks Matter (Hinges of History)
by Thomas Cahill (Author)

In Sailing the Wine-Dark Sea, his fourth volume to explore “the hinges of history,” Thomas Cahill escorts the reader on another entertaining—and historically unassailable—journey through the landmarks of art and bloodshed that defined Greek culture nearly three millennia ago.

In the city-states of Athens and Sparta and throughout the Greek islands, honors could be won in making love and war, and lives were rife with contradictions. By developing the alphabet, the Greeks empowered the reader, demystified experience, and opened the way for civil discussion and... View Details


Dancers After Dark
by Jordan Matter (Author)

Dancers After Dark is an amazing celebration of the human body and the human spirit, as dancers, photographed nude and at night, strike poses of fearless beauty.

Without a permit or a plan, Jordan Matter led hundreds of the most exciting dancers in the world out of their comfort zones—not to mention their clothes—to explore the most compelling reaches of beauty and the human form. After all the risk and daring, the result is extraordinary: 300 dancers, 400 locations, more than 150 stunning photographs. And no clothes, no arrests, no regrets.

Each image... View Details


Dark Matter
by Michelle Paver (Author)

January 1937. 28-year-old Jack is poor, lonely and desperate to change his life. So when he's offered the chance to join an Arctic expedition, he jumps at it. After they reach the remote, uninhabited bay where they will camp for the next year, Gruhuken, Jack feels a creeping unease. One by one, his companions are forced to leave. View Details


Dark Matter Volume 1: Rebirth
by Joseph Mallozzi (Author), Garry Brown (Illustrator)

TV series, Dark Matter, to premiere on Syfy June 12, 2015!

The six-person crew of a derelict spaceship awakens from stasis in the farthest reaches of space. Their memories wiped clean, they haveno recollection of who they are or how they go on board. The only clue to their identities is a cargo bay full of weaponry and a destination—a remote mining colony that is about to become a war zone! With no idea whose side they are on, they face a deadly decision. Will these amnesiacs turn their backs onhistory, or will their pasts catch up with them?

Collects issues #1-#4 of... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Peering Deeper Into Space
The past few years have ushered in an explosion of new discoveries about our universe. This hour, TED speakers explore the implications of these advances — and the lingering mysteries of the cosmos. Guests include theoretical physicist Allan Adams, planetary scientist Sara Seager, and astrophysicists Natasha Hurley-Walker and Jedidah Isler.
Now Playing: Science for the People

#461 Adhesives
This week we're discussing glue from two very different times. We speak with Dr. Jianyu Li about his research into a new type of medical adhesive. And Dr. Geeske Langejans explains her work making and investigating Stone Age and Paleolithic glues.