Nav: Home

Machine learning method accurately predicts metallic defects

February 03, 2017

For the first time, researchers at the Lawrence Berkeley National Laboratory (Berkeley Lab) have built and trained machine learning algorithms to predict defect behavior in certain intermetallic compounds with high accuracy. This method will accelerate research of new advanced alloys and lightweight new materials for applications spanning automotive to aerospace and much more.

Their results were published in the December 2016 issue of Nature Computational Materials.

Materials are never chemically pure and structurally flawless. They almost always contain defects, which play an important role in dictating properties. These defects may appear as vacancies, which are essentially 'holes' in the substance's crystal structure, or antisite defects, which are essentially atoms placed on the wrong crystal site. Understanding of such point defects is crucial for scientists designing materials because they can have a dramatic effect on long-time structural stability and strength.

Traditionally, researchers have used a computational quantum mechanical method known as density functional calculations to predict what kinds of defects can be formed in a given structure and how they affect the material's properties. Although effective, this approach is very computationally expensive to execute for point defects limiting the scope of such investigations.

"Density functional calculations work well if you are modeling one small unit, but if you want to make your modeling cell bigger the computational power required to do this increases substantially," says Bharat Medasani, a former Berkeley Lab postdoc and lead author of the npj paper. "And because it is computationally expensive to model defects in a single material, doing this kind of brute force modeling for tens of thousands of materials is not feasible."

To overcome these computing challenges, Medasani and his colleagues developed and trained machine learning algorithms to predict point defects in intermetallic compounds, focusing on the widely observed B2 crystal structure. Initially, they selected a sample of 100 of these compounds from the Materials Project Database and ran density functional calculations on supercomputers at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Berkeley Lab, to identify their defects.

Because they had a small data sample to work from, Medasani and his team used a forest approach called gradient boosting to develop their machine learning method to a high accuracy. In this approach additional machine learning models were built successively and combined with prior models to minimize the difference between the models predictions and the results from density functional calculations. The researchers repeated the process until they achieved a high level of accuracy in their predictions.

"This work is essentially a proof of concept. It shows that we can run density functional calculations for a few hundred materials, then train machine learning algorithms to accurately predict point defects for a much larger group of materials," says Medasani, who is now a postdoctoral researcher at the Pacific Northwest National Laboratory.

"The benefit of this work is now we have a computationally inexpensive machine learning approach that can quickly and accurately predict point defects in new intermetallic materials " says Andrew Canning, a Berkeley Lab Computational Scientist and co-author on the npj paper. "We no longer have to run very costly first principle calculations to identify defect properties for every new metallic compound."

"This tool enables us to predict metallic defects faster and robustly, which will in turn accelerate materials design," says Kristin Persson, a Berkeley Lab Scientist and Director of the Materials Project, an initiative aimed at drastically reducing the time needed to invent new materials by providing open web-based access to computed information on known and predicted materials. As an extension of this work an open source Python toolkit for modeling point defects in semiconductors and insulators (PyCDT) has been developed.
In addition to Medasani, Canning and Persson, other authors on the Nature Computational Materials paper include: Hong Ding, Wei Chen, Mark Asta and Maciej Haranczyk (Berkeley Lab); and Anthony Gamst (University of California, San Diego). Additionally, Danny Broberg (University of California, Berkeley), Geoffroy Hautier (University Catholique de Louvain, Belgium) and Nils Zimmermann (Berkeley Lab) were involved in the development of the PyCDT software.

The research was supported by the Department of Energy's Office of Science.

DOE/Lawrence Berkeley National Laboratory

Related Crystal Structure Articles:

A laser, a crystal and molecular structures
Researchers have built a new tool to study molecules using a laser, a crystal and light detectors.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Crystal clear: Understanding magnetism changes caused by crystal lattice expansion
An international team including researchers from Osaka University demonstrated helimagnetic behavior in a cubic perovskite material by expanding the lattice through barium doping.
Capturing the surprising flexibility of crystal surfaces
Images taken using an atomic force microscope have allowed researchers to observe, for the first time, the flexible and dynamic changes that occur on the surfaces of 'porous coordination polymer' crystals when guest molecules are introduced.
How a crystal is solvated in water
How a molecule from a solid crystal structure is solvated in a liquid solvent has been observed at a molecular level for the first time by chemists at Ruhr-Universität Bochum.
More Crystal Structure News and Crystal Structure Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...