Nav: Home

How nature tells us its formulas

February 03, 2020

Many of the biggest questions in physics can be answered with the help of quantum field theories: They are needed to describe the dynamics of many interacting particles, and thus they are just as important in solid state physics as in cosmology. Often, however, it is extremely complicated to develop a quantum field theoretical model for a specific problem - especially if the system in question consists of many interacting particles.

Now a team from the TU Wien and the University of Heidelberg has developed methods with which these models can be directly obtained from experimental measurements. Instead of comparing the experimental results to theoretical model predictions, it is, in a certain sense, possible to measure the theory itself. This should now shed new light on the complicated field of many-body quantum physics.

Quantum Simulators

In recent years, a new method of studying quantum physical systems has gained importance - the so-called "quantum simulators". "We simply do not have a satisfactory description of some quantum systems, for example high-temperature superconductors. Other systems can just not be observed directly, such as the early universe shortly after the Big Bang. Suppose we still want to learn something about such quantum systems - then we simply choose another system that can be easily controlled in the laboratory and adjust it so that it behaves in a similar way to the system we are actually interested in. For example, we can use experiments on ultracold atoms to learn about systems that we would otherwise not be able to study at all," explains Jörg Schmiedmayer from the Vienna Center of Quantum Science and Technology (VCQ) at TU Wien. This is possible because there are fundamental similarities between different quantum physical descriptions of different systems.

But no matter which quantum system is studied, scientists always come across a fundamental problem: "If there are too many particles involved, the formulas of quantum theory quickly become so complicated that they cannot be solved, not even with the best supercomputers in the world," explains Sebastian Erne. "That's a pity, because systems consisting of many particles are particularly interesting. In everyday life, it is always the case that many particles play a role at the same time."

Getting Rid of the Details

In general, it is not possible to solve the exact quantum theory for a many-particle-system, in which every single particle is considered. One has to find a simplified quantum description that contains all the essential properties, but no longer relies on details about the individual particles. "This is similar to describing a gas," explains Jörg Schmiedmayer. "We're not interested in every single atom, but in more general variables such as pressure and temperature."

But how do you arrive at such theories for many-body systems? Deriving them purely mathematically from the laws of nature that apply to individual particles is extremely complicated. But as it now turns out, this is not necessary. "We have found a method of reading the quantum field theoretical description directly from the experiment," says Schmiedmayer. "In a certain sense, nature provides the formulas, with which it must be described, all by itself."

We know that every quantum theory has to obey certain formal rules - we talk for example about correlations, propagators, vertices, Feynman diagrams - the basic building blocks of every quantum physical model. The research team of TU Wien and the University of Heidelberg has found a way to make these individual basic building blocks experimentally accessible. The experimental measurements result in an empirically obtained quantum theory for a many-body system, without having to work with paper and pencil.

"For years, we have suspected that this is theoretically possible, but not everyone believed us that it actually works," says Jörg Schmiedmayer. "Now we have shown that we were right - by looking at a special case where the theory can also be found and (in certain limits) solved mathematically. Our measurement results provide exactly the same theory building blocks."

Ultracold Atomic Clouds

The experiment was done with clouds of thousands of ultracold atoms that are trapped in a magnetic trap on an atomic chip. "From the quantum wave patterns of these atomic clouds, we can determine the correlation functions from which the basic building blocks of the appropriate theory can be derived," explains Schmiedmayer.

The results have now been published in the journal "Physical Review X". The team hopes that this will significantly simplify the study of quantum many-particle systems. Perhaps it will shed some light on some of the big questions in physics.

Prof. Jörg Schmiedmayer
Institute for Atomic and Subatomic Physics, Vienna Center for Quantum Science and Technology (VCQ)
TU Wien
Stadionallee 2, 1020 Wien
T +43-1-58801-141888

Vienna University of Technology

Related Quantum Articles:

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
A quantum of solid
Researchers in Austria use lasers to levitate and cool a glass nanoparticle into the quantum regime.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
Quantum physics: On the way to quantum networks
Physicists at Ludwig-Maximilians-Universitaet (LMU) in Munich, together with colleagues at Saarland University, have successfully demonstrated the transport of an entangled state between an atom and a photon via an optic fiber over a distance of up to 20 km -- thus setting a new record.
How we learn is a quantum-like manner!
It brings people new perspectives on understanding how human brains run.
How sensitive can a quantum detector be?
Measuring the energy of quantum states requires detecting energy changes so exceptionally small they are hard to pick out from background fluctuations, like using only a thermometer to try and work out if someone has blown out a candle in the room you're in.
Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
More Quantum News and Quantum Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at