Nav: Home

Water, water everywhere -- and it's weirder than you think

February 03, 2020

Tokyo, Japan - Researchers at The University of Tokyo have used computational methods and analysis of recent experimental data to demonstrate that water molecules take two distinct structures in the liquid state. The team investigated the scattering of X-ray photons through water samples and showed a bimodal distribution hidden under the first diffraction peak that resulted from tetrahedral and non-tetrahedral arrangements of water molecules. This work may have important implications throughout science, but especially with regard to living systems, like proteins and cell structures, which are strongly affected by their surrounding water molecules.

Given the ubiquity of water on our planet and the central role it plays in all known life, it may be hard to believe that there is anything left to learn about this most familiar fluid. A simple molecule made up of just two hydrogen atoms and one oxygen; water still hides fundamental mysteries that remain to be unraveled. For example, water has unusually high melting and boiling points, and even expands when it freezes (unlike most liquids, which contract). These and other unusual properties make it very different from almost all other liquids, but also allow life as we know it to exist.

The weirdness of water can be best understood by thinking about the very unique interactions between H2O molecules--the hydrogen bond. Water tends to form four hydrogen bonds with its four neighbors, which leads to tetrahedral arrangements of the neighbors. Such arrangements can be largely distorted under thermal fluctuations. However, whether the distortion leads to the coexistence of distinct tetrahedral and non-tetrahedral arrangements has remained controversial.

Now, scientists at The University of Tokyo have combined computer simulations and the analysis of scattering experimental data to find the "structure factor" of water - the mathematical function that represents the paths of dispersed X-rays when they scatter off the hydrogen and oxygen atoms. The analysis showed two overlapping peaks hiding in the first diffraction peak of the structure factor. One of these peaks corresponded to the distance between oxygen atoms as in ordinary liquids, while the other indicated a longer distance, as in a tetrahedral arrangement. "The combination of new computational methods and analysis of recent X-ray scattering data allowed us to see what was not visible in previous work," first author of the study Rui Shi explains.

This discovery may have huge implications across many scientific fields. Knowing the exact structural ordering of water is critical for a complete understanding of molecular biology, chemistry, and even many industrial applications. "It is very satisfying to be able to unravel the liquid structure of such a fundamental substance," senior author Hajime Tanaka says.
-end-
The work is published in the Journal of the American Chemical Society as "Direct Evidence in the Scattering Function for the Coexistence of Two Types of Local Structures in Liquid Water." (DOI 10.1021/jacs.9b11211)

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Institute of Industrial Science, The University of Tokyo

Related Hydrogen Articles:

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.
Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.
Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.
Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.
Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
More Hydrogen News and Hydrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.