Study finds childhood diet has lifelong impact

February 03, 2021

Eating too much fat and sugar as a child can alter your microbiome for life, even if you later learn to eat healthier, a new study in mice suggests.

The study by UC Riverside researchers is one of the first to show a significant decrease in the total number and diversity of gut bacteria in mature mice fed an unhealthy diet as juveniles.

"We studied mice, but the effect we observed is equivalent to kids having a Western diet, high in fat and sugar and their gut microbiome still being affected up to six years after puberty," explained UCR evolutionary physiologist Theodore Garland.

A paper describing the study has recently been published in the

The microbiome refers to all the bacteria as well as fungi, parasites, and viruses that live on and inside a human or animal. Most of these microorganisms are found in the intestines, and most of them are helpful, stimulating the immune system, breaking down food and helping synthesize key vitamins.

In a healthy body, there is a balance of pathogenic and beneficial organisms. However, if the balance is disturbed, either through the use of antibiotics, illness, or unhealthy diet, the body could become susceptible to disease.

In this study, Garland's team looked for impacts on the microbiome after dividing their mice into four groups: half fed the standard, 'healthy' diet, half fed the less healthy 'Western' diet, half with access to a running wheel for exercise, and half without.

After three weeks spent on these diets, all mice were returned to a standard diet and no exercise, which is normally how mice are kept in a laboratory. At the 14-week mark, the team examined the diversity and abundance of bacteria in the animals.

They found that the quantity of bacteria such as Muribaculum intestinale was significantly reduced in the Western diet group. This type of bacteria is involved in carbohydrate metabolism.

Analysis also showed that the gut bacteria are sensitive to the amount of exercise the mice got. Muribaculum bacteria increased in mice fed a standard diet who had access to a running wheel and decreased in mice on a high-fat diet whether they had exercise or not.

Researchers believe this species of bacteria, and the family of bacteria that it belongs to, might influence the amount of energy available to its host. Research continues into other functions that this type of bacteria may have.

One other effect of note was the increase in a highly similar bacteria species that were enriched after five weeks of treadmill training in a study by other researchers, suggesting that exercise alone may increase its presence.

Overall, the UCR researchers found that early-life Western diet had more long-lasting effects on the microbiome than did early-life exercise.

Garland's team would like to repeat this experiment and take samples at additional points in time, to better understand when the changes in mouse microbiomes first appear, and whether they extend into even later phases of life.

Regardless of when the effects first appear, however, the researchers say it's significant that they were observed so long after changing the diet, and then changing it back.

The takeaway, Garland said, is essentially, "You are not only what you eat, but what you ate as a child!"
-end-


University of California - Riverside

Related Microbiome Articles from Brightsurf:

The microbiome of Da Vinci's drawings
The microbiome study of seven drawings from Leonardo Da Vinci reveals that conservation work, geographical location, and past contaminations leave invisible traces on drawings despite their optimal storage conditions: a novel aspect of art objects that could be monitored to establish a bioarchive of our artistic heritage.

Managing the microbiome raises new hope for autism
Analysis of 619 plasma metabolites in a new study show a distinctive metabolic profile in autistic children prior to microbial transfer therapy The procedure helps modify gut microbiota, improving symptoms gastrointestinal and behavioral symptoms of the disease.

Discoveries reshape understanding of gut microbiome
The findings redefine how the so-called gut microbiome operates and how our bodies coexist with some of the 100 trillion bacteria that make it up.

A new tool for modeling the human gut microbiome
MIT engineers designed a device that replicates the lining of the colon.

How viruses and bacteria balance each other in the gut microbiome
A tiny arms race between bacteria and the viruses that attack them inside the gut could eventually offer a new way to treat out-of-balance microbiomes.

Microbiome confers resistance to cholera
Many parts of the world are in the midst of a deadly pandemic of cholera, an extreme form of watery diarrhea.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Gut microbiome influences ALS outcomes
Harvard University scientists have identified a new gut-brain connection in the neurodegenerative disease ALS.

The microbiome controls immune system fitness
Working alongside colleagues in Mainz, Bern, Hannover and Bonn, researchers from Charité -- Universitätsmedizin Berlin, the Berlin Institute of Health (BIH) and the German Rheumatism Research Center Berlin (DRFZ) were able to show how the microbiome helps to render the immune system capable of responding to pathogens.

Researchers uncover the moscow subway microbiome
Recently, a group of ITMO University researchers has looked into the microbiome of the Moscow Subway.

Read More: Microbiome News and Microbiome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.