European hibernating bats cope with white-nose syndrome which kills North American bats

February 03, 2021

What are the reasons for such a contrast in outcomes? A scientist team led by the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) has now analysed the humoral innate immune defence of European greater mouse-eared bats to the fungus. In contrast to North American bats, European bats have sufficient baseline levels of key immune parameters and thus tolerate a certain level of infection throughout hibernation. The results are published in the journal "Developmental and Comparative Immunology".

During infections caused by Pseudogymnoascus destructans (Pd), North American bats arouse frequently from hibernation to trigger a more elaborate immune response, whereas European bats remain dormant, owing, as the new results reveal, to their competent baseline immunity. Not being able to deal with the fungus by baseline immunity causes North American bats to deplete fat stores before the end of winter bnecause of the need for additional and energetically expensive arousals, which ultimately leads to their starvation. European bats may also arouse once in a while when infected but their strong baseline immunity allows them to balance the tight energy budget better during winter hibernation.

For this investigation, the scientists went to hibernation sites in Germany and studied 61 mouse-eared bats (Myotis myotis) with varying levels of natural infections by Pseudogymnoascus destructans. The animals were divided into three groups according to the severity of fungal infections (asymptomatic, mild symptoms, severe infection). Body mass and skeletal body size of bats was measured and blood samples taken from torpid animals. In addition, the team monitored in other conspecifics how often infected animals arose from hibernation. "We could show that there is no link between infection and the frequency of waking up from hibernation in the European greater mouse-eared bat," say Marcus Fritze and Christian C. Voigt, bat experts from the Department Evolutionary Ecology at Leibniz-IZW. "This is consistent with the idea that the fungus does not trigger an immune response in European hibernating bats but is rather kept under control by the bats' baseline immunity."

In contrast, North American bats such as little brown bats (Myotis lucifugus) arouse frequently when infected by the fungus to elicit an immune response. Frequent arousal and the immune response require energy and prematurely deplete the body's fat stores before the winter has ended. The protein haptoglobin seems key in the bats' fight against the fungus. Haptoglobin is an acute phase protein, which can be produced by bats without large metabolic costs. "Our results demonstrated the central role of haptoglobin in the defence against the fungus. Interestingly, baseline levels of this protein are sufficient to protect the European host against the fungus and there is no need to actively synthesise the protein during the torpid phase", adds Gábor Á. Czirják, wildlife immunologist at the Department of Wildlife Diseases of the Leibniz-IZW.

A second key finding of the team's investigation is that heavier European greater mouse-eared bats arouse from hibernation more frequently than lean conspecifics. This seems counterintuitive because each arousal event causes a depletion of fat stores. Well-nourished bats seem to assist their immune system by actively clearing off the external fungal hyphens from their body while being awake for short periods. Thus, heavy bats are in a healthier condition towards the end of hibernation than lean animals. Lean animals cannot afford to arouse as often and thus depend on the efficacy of the baseline immunity to control the fungus. The safety net of a competent immunity keeps European (and Asian) bats alive during infections with P. destructans but proves to be insufficient for North American bats.

These results add further evidence that there are differences in the defence strategies against the causative agent of white-nose syndrome in European and North American bat species. Tolerance strategies aim to limit the impact of the fungal infection on the health of animals. Resistance strategies, on the other hand, try to actively reduce the load of pathogens. "Tolerance strategies are effective, as the immune defences of hibernating European mouse-eared bats show," Voigt summarises. "In North American bats, however, this ability is not present to a sufficient degree, possibly because the Pd fungus originated in Europe, giving European species a head start in developing efficient defence mechanisms."

Fritze M, Puechmaille SJ, Costantini D, Fickel J, Voigt CC, Czirják GÁ (2021): Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans. DEVEL COMP IMMUNOL 119,


Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) in the Forschungsverbund Berlin e.V. Alfred-Kowalke-Str. 17
10315 Berlin

PD Dr Christian Voigt
Head of the Department of Evolutionary Ecology
phone: +49 30 5168 511

Dr Gábor-Árpád Czirják
Scientist in the Department of Wildlife Diseases
phone: +49 30 5168214

Steven Seet
Science Communication
phone: +49 (0)30 5168125

Leibniz Institute for Zoo and Wildlife Research (IZW)

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to