Fungus that eats fungus could help coffee farmers

February 03, 2021

Coffee rust is a parasitic fungus and a big problem for coffee growers around the world. A study in the birthplace of coffee - Ethiopia - shows that another fungus seems to have the capacity to supress the rust outbreaks in this landscape.

"Coffee leaf rust is a fungal disease that is a problem for coffee growers around the world, especially on Arabica coffee, which accounts for three quarters of global coffee production and has the finest cup quality. There is a need to learn more about natural solutions instead of just applying pesticides," says Kristoffer Hylander, professor at the Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University.

Coffee leaf rust is caused by a parasitic fungus that attacks the leaves of the coffee shrub. In some areas it has previously been known to have a potential natural enemy - a hyperparasitic fungus that grows on top of the rust. However, very little is known about its biology and to what extent it could suppress the rust. This is the first study on the interaction between the rust and its hyperparasite in Ethiopia, the birthplace of Arabica coffee. The coffee plant, the rust and its hyperparasite may have coevolved in Ethiopia for a long time.

Coffee leaf rust generally increases in abundance from the rainy to the dry season. However, it seems like this increase is reduced in places where the hyperparasite is common:

"This is an indication that the hyperparasite may have the potential to reduce outbreaks of the rust in areas where both the rust and the hyperparasite exist together," says Ayco Tack, associate professor at the Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University.

It seems like the rust and the hyperparasite thrive in slightly different environments, with the rust adapting well in less humid places and the hyperparasite favouring slightly more humid places such as coffee farms with more shade trees.

"This could be a win-win situation. By increasing the tree cover in coffee plantations with native shade tree species that maintain their leaves during the dry season, we could perhaps benefit both biodiversity and the hyperparasite," says Kristoffer Hylander, professor at the Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University.

The authors did not investigate whether the presence of the hyperparasite could lead to better coffee yields, via its effect on rust. The hyperparasite might reduce leaf drop associated with severe rust infection, thus reducing the expected indirect negative effect of the rust on coffee yields.

"This would be one of the next important steps in this research, since yield of coffee (or revenue) matters most for the smallholder coffee farmers. Interestingly, Ethiopia does not seem to have as big a problem with coffee leaf rust as other coffee-producing countries - and it would be interesting to find out if the hyperparasite may be an explanation for this difference. It is also important to note that the effect of coffee leaf rust in this landscape might change with the current global climate change," says Beyene Zewdie, who recently defended his thesis on the ecology of coffee diseases in Ethiopia at the Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University.

More detailed experimental studies are needed to explore the relationships between the rust and the hyperparasite. This could enable coffee growers to utilize the hyperparasite as a biological control for the coffee leaf rust in more intensively managed plantations where the rust epidemics are highly problematic.
-end-


Stockholm University

Related Fungus Articles from Brightsurf:

International screening of the effects of a pathogenic fungus
The pathogenic fungus Candida auris, which first surfaced in 2009, is proving challenging to control.

Research breakthrough in fight against chytrid fungus
For frogs dying of the invasive chytridiomycosis disease, the leading cause of amphibian deaths worldwide, the genes responsible for protecting them may actually be leading to their demise, according to a new study published today in the journal Molecular Ecology by University of Central Florida and the Smithsonian Conservation Biology Institute (SCBI) researchers.

Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.

The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.

Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.

Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.

Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.

How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.

North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.

Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.

Read More: Fungus News and Fungus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.