DOE begins international effort to sequence tree genome

February 04, 2002

OAK RIDGE, Tenn., Feb. 4, 2002 -- Cottonwoods, hybrid poplars and aspens could play a role in improving the environment, displacing imported oil and creating domestic jobs, but first scientists from the Department of Energy, Oak Ridge National Laboratory and around the world have to sequence the Populus genome.

Trees like cottonwood, hybrid poplar and aspen have long been used as model organisms in forestry, and the choice of Populus as the first tree genome to sequence is due in large part to their rapid growth rate, small genome size and widespread use in areas of interest to the forest industry and DOE.

"This effort will furnish scientists both in this country and abroad with an unprecedented molecular 'parts list' for a tree," said Jerry Tuskan, a researcher in ORNL's Environmental Sciences Division. "Such a list will provide the scientific community with a catalog of genes, knowledge as to what these genes do in trees and an exciting opportunity to better understand how trees grow."

Ultimately, this information will allow scientists to more effectively use trees to carry out important functions like carbon sequestration and enhanced production of biomass for fuels and fiber.

This project builds upon the success that DOE has had in mapping the human genome, a decade-long effort that is expected to lead to cures and the prevention of diseases in people. While sequencing the human genome took years, researchers at DOE's Joint Genome Institute, ORNL and cooperating institutions expect to make the genetic blueprint of Populus available within 18 months. And they expect the payback to be significant.

"Genetic sequencing of Populus is expected to lead to faster growing trees, trees that produce more biomass for conversion to fuels, while also sequestering carbon from the atmosphere," said Stan Wullschleger of ORNL's Environmental Sciences Division. "In addition, trees with unique traits may be used in phytoremediation, a process whereby trees such as cottonwoods or hybrid poplars could be used to clean up hazardous waste sites.

"Clearly, the information we gain from this effort will benefit ongoing and future projects within DOE and open the doors to countless other opportunities to use woody plants in the pursuit of goals related to traditional forest products and even ecological preservation."

Worldwide, support for the project is high, as more than 100 scientists have indicated via the Web that they believe a poplar genome sequencing effort should be a top priority of forest research. Already, cottonwoods, hybrid poplars and aspens are being used in a variety of ways ranging from paper production to carbon sequestration to the development of fast-growing trees as a source of feedstocks for renewable bio-based products.

"I have never seen the forest genetics community more excited," said Toby Bradshaw, a molecular biologist with the University of Washington, which helped DOE lay the foundation for this effort. "The sequencing of the poplar genome will be a bonanza for researchers seeking to understand how individual genes influence the growth of trees and their adaptation to the natural environment. This knowledge might eventually be applied to the breeding of fast-growing trees capable of producing wood, fiber and energy sustainably on a small amount of land."

In addition to ORNL, participants in the international project include the Joint Genome Institute, the University of Washington, Genome Canada and the Swedish University of Agricultural Sciences. The Joint Genome Institute sequencing facility will produce half of the sequence this year and another half in 2003.

Other ORNL researchers involved in the project are Frank Larimer of the Life Sciences Division and Lee Gunter and Zamin Yang of the Environmental Sciences Division. The research was funded by DOE's Office of Biological and Environmental Research.

ORNL is a Department of Energy multiprogram research facility managed by UT-Battelle.

If you would prefer to receive your press releases by e-mail, please send your e-mail address to

You may read other press releases from Oak Ridge National Laboratory or learn more about the lab if you have access to the Internet. You can find our information on the World Wide Web at

DOE/Oak Ridge National Laboratory

Related Human Genome Articles from Brightsurf:

240 mammals help us understand the human genome
A large international consortium led by scientists at Uppsala University and the Broad Institute of MIT and Harvard has sequenced the genome of 130 mammals and analysed the data together with 110 existing genomes to allow scientist to identify which are the important positions in the DNA.

The National Human Genome Research Institute publishes new vision for human genomics
The National Human Genome Research Institute this week published its 'Strategic vision for improving human health at The Forefront of Genomics' in the journal Nature.

Interpreting the human genome's instruction manual
Berkeley Lab bioscientists are part of a nationwide research project, called ENCODE, that has generated a detailed atlas of the molecular elements that regulate our genes.

3-D shape of human genome essential for robust inflammatory response
The three-dimensional structure of the human genome is essential for providing a rapid and robust inflammatory response but is surprisingly not vital for reprogramming one cell type into another.

The genome of chimpanzees and gorillas could help to better understand human tumors
A new study by researchers from the Institute of Evolutionary Biology (IBE), a joint center of UPF and the Spanish National Research Council (CSIC), shows that, surprisingly, the distribution of mutations in human tumors is more similar to that of chimpanzees and gorillas than that of humans.

It's in our genome: Uncovering clues to longevity from human genetics
Researchers from Osaka University found that high blood pressure and obesity are the strongest factors reducing lifespan based on genetic and clinical information of 700,000 patients in the UK, Finland and Japan.

New limits to functional portion of human genome reported
An evolutionary biologist at the University of Houston has published new calculations that indicate no more than 25 percent of the human genome is functional.

Synthesizing the human genome from scratch
For the past 15 years, synthetic biologists have been figuring out how to synthesize an organism's complete set of DNA, including all of its genes.

Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.

Evolution purged many Neanderthal genes from human genome
Neanderthal genetic material is found in only small amounts in the genomes of modern humans because, after interbreeding, natural selection removed large numbers of weakly deleterious Neanderthal gene variants, according to a study by Ivan Juric and colleagues at the University of California, Davis, published Nov.

Read More: Human Genome News and Human Genome Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to