Defying the laws of Mendelian inheritance

February 04, 2013

In 2005, Susan Lolle and colleagues from Purdue University published a paper in Nature, concluding that Arabidopsis thaliana plants do not obey the laws of Mendelian inheritance (the idea that all genes are inherited from their parents). Instead, Lolle found that these plants were demonstrating genetic traits from older generations, which shouldn't be possible according to our current understanding of how genes are passed on.

At the time of publishing, the paper was recommended by 20 F1000Prime Faculty Members, and it is still one of the all-time top 10 papers on the site despite also being dissented. In the wider scientific community the paper was met with some criticism, alternative theories to explain the findings were offered, and there were calls for more evidence. Many believed the findings to be the result of contamination from other seeds, the introduction of unrelated genetic material into the breeding line (out-crossing), or another novel DNA-based genetic phenomenon.

Lolle and new colleagues from the University of Waterloo have now published a follow-up paper on F1000Research, having spent several years conducting numerous experiments that they believe provide further evidence to support the original findings and disprove some of the other suggested theories. In Lolle et al.'s paper, "De novo genetic variation revealed in somatic sectors of single Arabidopsis plants", they have used DNA markers to demonstrate the presence of multiple genetic traits in single Arabidopsis plants. The article has now been approved by three independent leading names in the field, Andy Pereira (University of Arkansas), Igor Kovalchuk (University of Lethbridge), and David Oppenheimer (University of Florida), who provided formal referee reports and it will now be indexed in PubMed, Scopus and other major indexers. All peer review for F1000Research is conducted post-publication; referees' comments are openly published and can be viewed (and commented on by others) at the bottom of each article, and authors have the opportunity then to modify their article and publish a new version as appropriate.

A separate article by Carina Barth and her former group at West Virginia University (Barth is now with ConRuhr North America) has been published at the same time on F1000Research, and may go some way to supporting Lolle's findings, although the referees were more mixed in their reaction to this study. In their article "The novel Arabidopsis thaliana svt2 suppressor of the ascorbic acid-deficient mutant vtc1-1 exhibits phenotypic and genotypic instability", Barth et al. attempted to isolate Arabidopsis plants that could in some way compensate for a diminished capacity to synthesize vitamin C in order to better understand the genetic regulation of this process in those plants that do perform the function. They found that a number of their plants compensated by apparently reverting back to an ancestral genome containing the trait responsible for successful biosynthesis of vitamin C, even though they had been bred from plants with a defect in this trait. They conclude that this kind of genetic instability could be explained by hidden information somewhere in the organism's genome, perhaps even Lolle's RNA cache theory.

These papers could have significant implications for plant biology, genetics and agriculture. If confirmed, the findings will completely alter our understanding of how organisms inherit their genes. In addition, the findings could have practical implications for the future. These theories could be adapted to help us better understand how plants (and crops) cope with environmental stress, with relevance to global warming, the moving crop belts and global food security.
-end-
To find out more about these two papers and read our referees' reports, see http://bit.ly/14Di70T.

Read the full articles:

De novo genetic variation revealed in somatic sectors of single Arabidopsis plants [v1; ref status: indexed, http://f1000r.es/kw]
Marianne T Hopkins, Aaron M Khalid, Pei-Chun Chang, Karen C Vanderhoek, Dulcie Lai, Meghan D Doerr, Susan J Lolle http://f1000research.com/articles/2-5/v1

The novel Arabidopsis thaliana svt2 suppressor of the ascorbic acid-deficient mutant vtc1-1 exhibits phenotypic and genotypic instability [v1; ref status: indexed, http://f1000r.es/o2]
Chase F Kempinski, Samuel V Crowell, Caleb Smeeth, Carina Barth http://f1000research.com/articles/2-6/v1

To find out more about F1000Research, please contact Eleanor Howell. For more information, visit http://f1000research.com/.

About F1000Research

F1000Research is the first Open Science journal for life scientists. Open Science means:

1. No Publication Delay: All articles, including research findings, analyses of scientific developments, opinions, and comments should be made visible without delay.

2. All Data Included: Reports of findings of new research should always be accompanied by the complete dataset on which they are based, provided in a form enabling confirmation or reuse of the data by other researchers.

3. Post-publication Peer Review: Refereeing of reports of new research is important and should be carried out after publication to prevent delay.

4. Open Refereeing: All referee reports and commentary should be published with the names and affiliations of the referees and commenters visible.

5. Full Open Access: All articles must be published without any restriction of access.

F1000Research accepts all scientifically sound articles. In addition to traditional papers, F1000Research single findings, datasets, short articles, case reports, protocols, replications, null or negative results, and opinion pieces and reviews.More information can be found in our online information pack: http://f1000.com/resources/F1000Research_Online_Information_Pack.pdf.

Faculty of 1000

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.