Good hair day: New technique grows tiny 'hairy' materials at the microscale

February 04, 2014

Scientists at the U.S. Department of Energy's Argonne National Laboratory attacked a tangled problem by developing a new technique to grow tiny "hairy" materials that assemble themselves at the microscale.

The key ingredient is epoxy, which is added to a mixture of hardener and solvent inside an electric cell. Then the scientists run an alternating current through the cell and watch long, twisting fibers spring up. It looks like the way Chia Pets grow in commercials.

"The process is very simple, the materials are cheap and available and they can grow on almost every surface we've tried," said Argonne physicist Igor Aronson, who co-authored the study.

By tweaking the process, the team can grow many different shapes: short forests of dense straight hairs, long branching strands or "mushrooms" with tiny pearls at the tips. Interestingly, though the structures can be permanent, the process is also instantly reversible.

"This is a completely new kind of structure," said Argonne physicist Alexey Snezhko, also a co-author. "With this method, you can support more complex structures that have unique properties."

Scientists are very interested in materials with tiny fibers for technologies like batteries, photovoltaic cells or sensors. For one, "hairy" materials offer up a lot of surface area. Many chemical reactions depend on two surfaces making contact with one another, so a structure that exposes a lot of surface area will speed the process along. (For example, grinding coffee beans gives the coffee more flavor than soaking whole beans in water.) Micro-size hairs can also make a surface that repels water, called superhydrophobic, or dust.

The tiny-fiber structure is so useful that it's evolved several times in nature, Aronson pointed out. For example, blood vessels are lined with a layer of similar tiny protein "hairs," thought to help reduce wear and tear by blood cells and bacterial infections, among other properties.

Currently, the primary methods of creating interesting shapes at small scales is lithography, a type of "printing" where researchers lay a pattern on the material and the rest of it is melted or etched away. But it's hard to make very complex structures with this method; it's hard to control; and the results aren't always uniform.

"These polymers assemble themselves," Snezhko explained, "which is much easier and less labor-intensive than lithography."

In one experiment the researchers used a process called atomic layer deposition that deposits a molecule-thick layer of material over the entire hairy structure, like a fresh blanket of snow, to add a layer of semiconductor material. Semiconductors are essential ingredients in many technologies, such as solar cells and electronics.

This provided proof of concept that the polymer could be incorporated into semiconductor-based renewable energy technologies. It also proved that it could survive high temperatures, up to 150°C, an essential property for many manufacturing processes.

Right now the structures are about a single micron thick--you could stack 100 of them to reach the width of a sheet of paper. Aronson and Snezhko said their next goal is to get them even smaller, to the nanoscale.
-end-
The study, "Self-assembled tunable networks of sticky colloidal particles," was published last week in Nature Communications. Argonne scientists Arnaud Demortière and Thomas Proslier were co-authors on the study, along with Nicholas Becker (Illinois Institute of Technology) and Maksim Sapozhnikov (Russian Academy of Sciences and N.I. Lobachevsky State University).

Funding for the research came from the U.S. Department of Energy's Office of Science and the Russian Foundation for Basic Research. Use of Argonne's Center for Nanoscale Materials to characterize the samples was supported by the DOE's Office of Science, Office of Basic Energy Sciences.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Argonne National Laboratory

Related Coffee Articles from Brightsurf:

Drink coffee after breakfast, not before, for better metabolic control
The new study looked at the combined effects of disrupted sleep and caffeine on our metabolism - with surprising results.

Even in people with Parkinson's gene, coffee may be protective
Even for people with a gene mutation tied to Parkinson's disease, coffee consumption may be associated with a lower risk of actually developing the disease, according to a new study published in the September 30, 2020, online issue of Neurology®, the medical journal of the American Academy of Neurology.

A coffee and catnap keep you sharp on the nightshift
A simple coffee and a quick catnap could be the cure for staying alert on the nightshift as new research from the University of South Australia shows that this unlikely combination can improve attention and reduce sleep inertia.

Latest findings on bitter substances in coffee
Coffee is very popular around the world despite or perhaps because of its bitter taste.

Coffee linked to lower body fat in women
Women who drink two or three cups of coffee a day have been found to have lower total body and abdominal fat than those who drink less, according to a new study published in The Journal of Nutrition.

How to make the healthiest coffee during COVID-19 lockdown
We may all be drinking more coffee to help us survive the COVID-19 lockdown.

Coffee changes our sense of taste
Sweet food is even sweeter when you drink coffee. This is shown by the result of research from Aarhus University.

'Whiskey webs' are the new 'coffee ring effect'
Spilled coffee forms a ring as the liquid evaporates, depositing solids along the edge of the puddle.

Is your coffee contributing to malaria risk?
Researchers at the University of Sydney and University of São Paulo, Brazil, estimate 20% of the malaria risk in deforestation hot spots is driven by the international trade of exports including: coffee, timber, soybean, cocoa, wood products, palm oil, tobacco, beef and cotton.

The complex biology behind your love (or hatred) of coffee
Why do some people feel like they need three cups of coffee just to get through the day when others are happy with only one?

Read More: Coffee News and Coffee Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.