New finding may compromise aging studies

February 04, 2015

Some studies on the genetic roots of aging will need a second look after the discovery that a common lab chemical can extend the life span of female fruit flies by 68 percent.

For years, scientists have engineered fruit flies whose genes can be turned on and off by a synthetic hormone, allowing detailed studies of the effects of single genes on life span. Many of the genes have close relatives in humans.

Unfortunately, the hormone used to perform the studies turns out to be anything but neutral.

John Tower, professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences, had been studying genetic causes of aging by turning genes off and on in flies. He and lab member Gary Landis grew suspicious of the hormone that they and others were using to activate the genes - mifepristone, a synthetic chemical known to terminate pregnancy in humans.

Many studies have shown that reproduction shortens lifespan in flies and other organisms. Tower and coworkers wondered if the hormone they were using could be affecting reproduction in flies, and in turn their life span.

They discovered that flies exposed to the hormone laid only half the usual amount of eggs - and lived 68 percent longer, from a median age of 56 to 94 days.

The mifepristone had little or no effect on the life expectancy of female flies that had not mated, which had an even better overall survival rate and maximum lifespan.

Tower and his team published their findings online Jan. 15 in the journal Aging.

"This opens up a new line of inquiry for longevity studies, and identifies candidate genes and mechanisms for regulating the trade-off between reproduction and lifespan that may be shared with humans," Tower said. "It does, however, mean that our earlier longevity studies that relied on mifepristone as a gene switch will need to be reevaluated."
-end-
The study, coauthored by USC's Gary N. Landis, Matthew P. Salomon, Daniel Keroles, Nicholas Brookes, and Troy Sekimura, was funded by a grant from the Department of Health and Human Services, National Institute on Aging (AG011833) and by pilot project funding from the Southern California Environmental Health Sciences Center (5P30ES007048).

It can be found online at: http://www.impactaging.com/papers/v7/n1/full/100721.html.

University of Southern California

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.