Nav: Home

How gut inflammation sparks colon cancer

February 04, 2016

DURHAM, N.C. -- Chronic inflammation in the gut increases the risk of colon cancer by as much as 500 percent, and now Duke University researchers think they know why.

Their new study points to a biomarker in the cellular machinery that could not only serve as an early warning of colon cancer, but potentially be harnessed to counteract advanced forms of the disease, the second-largest cause of cancer death in the U.S.

In the study, published online on February 4 in the journal Cell Stem Cell, Duke biomedical engineers show how colon cancer development is intricately linked to a specific microRNA that dictates how cells divide.

"A quarter of the world's population is affected by some type of gut inflammation," said lead author Xiling Shen, associate professor of biomedical engineering at Duke University. "These patients always have a much higher chance of developing colon cancer, but it was never clear why. Now we have found a link."

In the study, Shen's group focused on a microRNA called miR-34a that gives cancer stem cells the odd ability to divide asymmetrically. This process controls the cancerous stem cell population and generates a diverse set of cells.

While researchers knew that miR-34a was responsible for this ability, nobody knew where it came from, because normal, healthy colon stem cells don't asymmetrically divide and don't need this microRNA. They wondered if there was a mutation unique to cancer stem cells, or a hidden role for the microRNA in normal physiology.

To find out, Shen and his colleagues deleted miR-34a from the genetic code of some mice. But nothing happened.

"It really puzzled the scientific community," said Shen. "Usually if something is important and you delete it, it causes a problem."

In the latest study, however, the problem showed up when the mice's tissues became inflamed. Without any microRNA miR-34a, their stem cells quickly grew out of control and formed many tumor-like structures.

Based on the study, Shen's group concluded that even though miR-34a is active in cancer, it's actually a good guy. Triggered to act when the gut becomes inflamed, miR-34a forces the process of asymmetrical division, helping to control normal stem cell populations.

Even in the early stages of tumor growth, the microRNA remains active to keep the cancer stem cell population down. As the cancer progresses however, its cells develop mutations that enable shutting off miR-34a, causing cells to divide into flexible hybrids that can revert back into stem cells if needed. It's this flexibility that makes late-stage cancers so difficult to eradicate.

"Typically when you look at tumors and see something that isn't in normal tissue, you think it's a bad thing," said Shen. "But it turns out that, under normal circumstances, these microRNAs are the good guys who only show up when things go wrong. And when you silence them in late-stage cancer, it's like the supervillain carried off the superhero and the cancer becomes much worse."

But Shen is hoping that understanding the role of miR-34a might lead to this supervillain's vulnerability.

With a test to look for elevated levels of miR-34a, researchers could create an early warning system to catch cancers in their youthful stages when they are much easier to cure. And as a possible treatment for late-stage cancer, researchers are trying to get the cancer cells to express miR-34a again. This would stop the tumor cells from gaining the flexibility to revert back to stem cells and allow doctors to wipe them out once and for all.

Clinical trials are currently trying to do just this in multiple cancer types, but this is the first study that has shown that it might also work for colon cancer. The discovery will also help researchers design clinical trials and pick the patients who have the best chance to respond to the therapy.
-end-
This research was supported by the National Institutes of Health (R01GM95990, R01GM114254), the National Science Foundation (1350659, 1137269), New York State Stem Cell Science (C029543) and the Defense Advanced Research Projects Agency (19-1091726).

"A miR-34a-Numb feed-forward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer." Pengcheng Bu, Lihua Wang, Kai-Yuan Chen, Tara Srinivasan, Preetish Kadur Lakshminarasimha Murthy, Kuei-Ling Tung, Anastasia Kristine Varanko, Huanhuan Joyce Chen, Yiwei Ai, Sarah King, Steven M. Lipkin, Xiling Shen. Cell Stem Cell, 2016. DOI: 10.1016/j.stem.2016.01.006

Duke University

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...