Nav: Home

When did flowers originate?

February 04, 2018

Flowering plants likely originated between 149 and 256 million years ago according to new UCL-led research.

The study, published today in New Phytologist by researchers from the UK and China, shows that flowering plants are neither as old as suggested by previous molecular studies, nor as young as a literal interpretation of their fossil record.

The findings underline the power of using complementary studies based on molecular data and the fossil record, along with different approaches to infer evolutionary timescales to establish a deeper understanding of evolutionary dynamics many millions of years ago.

"The discrepancy between estimates of flowering plant evolution from molecular data and fossil records has caused much debate. Even Darwin described the origin of this group as an 'abominable mystery'", explained lead author, Dr Jose Barba-Montoya (UCL Genetics, Evolution & Environment).

"To uncover the key to solving the mystery of when flowers originated, we carefully analysed the genetic make-up of flowering plants, and the rate at which mutations accumulate in their genomes."

Through the lens of the fossil record, flowering plants appear to have diversified suddenly, precipitating a Cretaceous Terrestrial Revolution in which pollinators, herbivores and predators underwent explosive co-evolution.

Molecular-clock dating studies, however, have suggested a much older origin for flowering plants, implying a cryptic evolution of flowers that is not documented in the fossil record.

"In large part, the discrepancy between these two approaches is an artefact of false precision on both palaeontological and molecular evolutionary timescales," said Professor Philip Donoghue from the University of Bristol's School of Earth Science, and a senior author of the study.

Palaeontological timescales calibrate the family tree of plants to geological time based on the oldest fossil evidence for its component branches. Molecular timescales build on this approach, using additional evidence from genomes for the genetic distances between species, aiming to overcome gaps in the fossil record.

"Previous studies into molecular timescales failed to explore the implications of experimental variables and so they inaccurately estimate the probable age of flowering plants with undue precision," said Professor Ziheng Yang (UCL Genetics, Evolution & Environment) and senior author of the study.

"Similarly, interpretations of the fossil record have not fully recognised its shortcomings as an archive of evolutionary history, that is, that the oldest fossil evidence of flowering plants comes from very advanced, not primitive flowering plant lineages," Professor Donoghue added.

The researchers compiled a large collection of genetic data for many flowering plant groups including a dataset of 83 genes from 644 taxa, together with a comprehensive set of fossil evidence to address the timescale of flowering plant diversification.

"By using Bayesian statistical methods that borrow tools from physics and mathematics to model how the evolutionary rate changes with time, we showed that there are broad uncertainties in the estimates of flowering plant age, all compatible with early to mid-Cretaceous origin for the group," said Dr Mario dos Reis (School of Biological and Chemical Sciences at Queen Mary University of London), a co-author of the study.
-end-
The team involved researchers from UCL, Queen Mary University of London, the Chinese Academy of Sciences, the Natural History Museum and the University of Bristol.

The study was kindly funded by the Biotechnology and Biosciences Research Council (UK), the Natural Environment Research Council, the Royal Society and the Wolfson Foundation.

University College London

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.