Nav: Home

Treatment of nitrogen-polluted sediment using marine anammox bacteria

February 04, 2018

Working on a way to alleviate eutrophication in coastal waters, a research collaboration between Kumamoto University in Japan and the Virginia Institute of Marine Science (VIMS) in the US have found a combination of bacteria with the potential to lighten the impact of excess nitrogen found in many coastal water systems.

Water enrichment through excessive amounts of nutrients in coastal environments, a phenomenon known as eutrophication, is a major issue for many coastal areas around the world. The extra nutrients, typically from anthropological changes to the nitrogen cycle (e.g., agricultural runoff), are deposited into the seabed causing an unbalanced system and having detrimental effects on the aquatic environment. These effects often manifest as algal blooms that can be harmful to both humans and aquatic animals in the area. As eutrophication increases in coastal areas around the world, methods of counteracting its consequences are highly sought after.

Researchers have had limited success with different nitrogen removal techniques. Flushing is often ineffective at removing contaminants because it doesn't reach sources deep in sediment. Evacuation can produce new environmental risks when sediment is transferred away from the area. And recirculation with denitrification can have low contaminant removal efficiency. Anaerobic ammonium oxidation (anammox) with bacteria is thought to be a cost-effective alternative that could be performed "on-site", but its effectiveness and interaction with other microbes was unclear. This is what the collaboration between Kumamoto University and VIMS worked to illuminate.

The researchers used sediment from a shrimp pond in southern Japan and compared the nitrogen removal between an unmodified sample (SB-C) and one with an increased amount of indigenous marine anammox bacteria (MAB) (SB-AMX). The sediment samples went through four different phases over 285 days. By the end of the experiments, the researchers found that a bicarbonate supplement and high nitrogen content was necessary for anammox bacteria to thrive.

The researchers also assessed the makeup of other microbial colonies in the sediment samples to reveal any symbiotic or disadvantageous relationships. They discovered that the microbial communities between the two samples were very different. A relatively large amount of sulfur-oxidizing bacteria (SOB) was found at the bottom of SB-C, and higher amounts of sulfate-reducing bacteria (SRB) were found in SB-AMX. As compounds produced by SRB are toxic to anammox bacteria, it is thought that SRB is the cause for the low nitrogen reduction performance of both samples at various times in the experiment. SOB, on the other hand, is beneficial because it removes the sulfur compounds that are toxic to anammox bacteria. Furthermore, other researchers have noted that SOB can be stimulated by the addition of bicarbonates, like that which was added to phase three of this experiment.

"Our study shows that a synergistic effect can be had between SOB and anammox bacteria by simply adding bicarbonate," said project leader Dr. Yasunori Kawagoshi of Kumamoto University. "There is still much work to be done before we can try this technique in nature but we believe it shows a lot of promise to lessen the damage caused in areas of high eutrophication."
This research was posted online in the journal Chemosphere on 28 Dec. 2017.


Van Duc, L., Song, B., Ito, H., Hama, T., Otani, M., & Kawagoshi, Y. (2018). High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment. Chemosphere, 196, 69-77. doi:10.1016/j.chemosphere.2017.12.159

Kumamoto University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...