Nav: Home

New genome-editing method 'cuts back' on unwanted genetic mutations

February 04, 2018

Osaka - Gene therapy is an emerging strategy to treat diseases caused by genetic abnormalities. One form of gene therapy involves the direct repair of a defective gene, using genome-editing technology such as CRISPR-Cas9. Despite its therapeutic potential, genome editing can also introduce unwanted and potentially harmful genetic errors that limit its clinical feasibility. In a study published in Genome Research, researchers centered at Osaka University report the use of a modified version of CRISPR-Cas9 that can edit genes with substantially fewer errors.

CRISPR-Cas9 works through the combined action of the Cas9 protein, which cuts DNA, and a short guiding RNA (sgRNA), which tells Cas9 where to make the cut. Together, these two molecules allow virtually any gene in the genome to be targeted for editing. The greater challenge, though, is finding a way to make specific changes to a gene once it has been targeted.

"Cas9 cleaves DNA on both of its strands, essentially splitting the target gene in two," principal investigator Shinichiro Nakada explains. "The cell tries to repair the damage by ligating the two pieces back together, but the end result is imprecise and often leaves unintended mutations."

Cells have a precise form of repair that uses donor DNA as a template to correct damage. The template acts as a molecular blueprint, allowing the cell to repair DNA with much greater accuracy. Importantly, by giving cells a different blueprint-in other words, by introducing foreign donor DNA into a cell-highly accurate edits can be made to a defective gene.

"The problem is that Cas9 cleavage is rarely repaired by the precise route," Nakada adds. "We instead used a modified Cas9 that only 'nicks' DNA in one strand, rather than cutting both strands. We discovered that when we nick both the target gene and donor DNA, we can essentially commandeer precise repair to make exact changes to the target gene."

The researchers found that the nicking technique, which they term Single Nicking in the target Gene and Donor (SNGD), greatly suppresses the rate of unintended genetic mutation compared with the conventional method. In one experiment, the standard technique made potentially-harmful errors over 90% of the time, while SNGD did so less than 5% of the time. Importantly, this precision did not impair the overall performance of the approach, which was able to efficiently achieve the desired genetic edits.

"Our study is a proof of principle that target-donor nicking can achieve accurate genome editing without DNA cleavage, which has significant implications for its use in medicine," Nakada notes. "There are many diseases for which a precise Cas9 system like this would make gene therapy more cost-effective and safer. We are very excited to see how this technique will be incorporated into the current paradigm of gene editing technologies."
-end-
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Osaka University

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.