Nav: Home

Physicists uncover the topological origin of surface electromagnetic waves

February 04, 2019

Maxwell's electromagnetic theory, which was formulated 150 years ago, was one of the greatest breakthroughs in physics. It united electricity and magnetism, provided an ultimate description of electromagnetic waves, including light, and anticipated relativity and the field theories of the 20th century. More recently, more than 60 years ago, scientists found that electromagnetic radiation can not only propagate in free space but can also form surface waves at interfaces between different media, such as between metals and air or glass. This resulted in the development of plasmonics and metamaterials, where surface electromagnetic waves underpin a number of phenomena and useful applications.

Another area of modern physics where surface waves play crucial role is topological quantum systems, which are very robust against small perturbations and continuous deformations. The discovery of nontrivial topological phases in condensed-matter quantum systems and the existence of topological surface modes at interfaces between topologically-different materials resulted in the Nobel Prize in physics in 2016.

Now, in a paper published in Nature Communications, scientists from the RIKEN Cluster for Pioneering Research in Japan showed that the well-known surface electromagnetic waves at interfaces between homogeneous isotropic media, obtained within classical Maxwell's electromagnetism, also have a purely topological origin, similar to quantum topological states.

This new approach illuminates the origin of surface electromagnetic waves and explains why these waves appear at interfaces where one of the medium parameters (dielectric permittivity or magnetic permeability) changes its sign. Moreover, the number of surface modes is determined by the number of the bulk-medium parameters changing their signs at the interface, which is called "bulk-boundary correspondence" in the topological formalism.

Konstantin Bliokh says: "There is a crucial difference between the topological description of surface Maxwell waves and that of previously known topological surface modes. So far, topological properties and classification of various wave systems have relied on mathematical properties of the Hamiltonian (i.e., energy) operator characterizing the system. In contrast, the topological properties of Maxwell's waves are described by the so-called helicity operator, which characterizes the chirality--or handedness--of circularly-polarized electromagnetic waves. Thus, our theory also extends the range of applicability of the topological approach to other wave systems. It shows that the topological classification can be associated not only with the Hamiltonian but also with other operators corresponding to conserved physical quantities."

Franco Nori continues: "Our work provides a new twist and insights for several areas of wave physics: Maxwell electromagnetism, topological quantum states, and plasmonics/metamaterials."
-end-


RIKEN

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"