Nav: Home

Early spring rain boosts methane from thawing permafrost by 30 percent

February 04, 2019

Arctic permafrost is thawing as the Earth warms due to climate change. In some cases, scientists predict that this thawing soil will release increasing amounts of methane, a potent greenhouse gas, that is known to trap more heat in our planet's atmosphere.

Now a University of Washington-led team has found a new reason behind increased methane emissions from a thawing permafrost bog in Alaska: Early spring rainfall warms up the bog and promotes the growth of plants and methane-producing microbes. The team showed that early precipitation in 2016 warmed the bog about three weeks earlier than usual, and increased the bog's methane emissions by 30 percent compared to previous years. These results were recently published in Geophysical Research Letters.

"In general, the chance of generating methane goes up with increased rainfall because soils get waterlogged. But what we see here is different," said corresponding author Rebecca Neumann, an associate professor in the UW Department of Civil & Environmental Engineering. "Early rainfall sent a slog of warm water moving into our bog. We believe microbes in the bog got excited because they were warmed up, so they released nutrients from the soil that allowed more plant growth. Methane production and emission are tightly linked with soil temperature and plant growth.

"Our results emphasize that these permafrost regions are sensitive to the thermal effects of rain, and because we're anticipating that these environments are going to get wetter in the future, we could be seeing increases in methane emissions that we weren't expecting."

In northern latitudes, bogs form when ice-rich permafrost thaws. The thawed area sinks relative to the surrounding landscape as the ice melts, and soil becomes waterlogged, creating a wetland with grassy plants called sedges growing across the surface.

Neumann and her team studied a thawing permafrost bog located about 20 miles from Fairbanks, Alaska, from 2014 through 2016. Over the years, the researchers tracked methane emissions in and around the bog, sedge plant growth and soil temperature at 16 different depths.

In 2016 the team saw temperatures at the edge of the bog increase 20 days earlier, and cumulative methane emissions across the bog increase by 30 percent as compared to the previous years.

"We saw the plants going crazy and methane emissions going bonkers," Neumann said. "2016 had above average rainfall, but so did 2014. So what was different about this year?"

The key turned out to be the timing of the precipitation: The spring rainfall started earlier in 2016 compared to 2014. In the spring the ground is colder than the air. So the rain, which is the same temperature as the air, warms up the ground as it enters the soil. The earlier the spring rains come, the sooner the soil in the surrounding forest gets saturated. Any surplus rain then flows down into the bog, rapidly warming the bog soils.

The warm soil aids microbes living in the bog and speeds up their metabolisms. Normally microbes use oxygen to break down organic matter, and they release carbon dioxide into the air. But in waterlogged soils, like a bog created by permafrost thaw, there's no oxygen around. So the microbes have to use whatever is available, and they end up converting organic matter into methane.

"It's the bottom of the barrel in terms of energy production for them," Neumann said. "The microbes in this bog on some level are like 'Oh man, we're stuck making methane because that's all this bog is allowing us to do.'"

At the same time, the sedge plants are also fueled by the warmer soil. In 2016 the team found more of these plants at the warmer edges of the bog. Sedges, like most plants, take carbon dioxide from the air to make their food, which they send to their roots to help them grow. Sometimes the food leaks out of the roots into the soil where it can become food for the microbes. So more sedges directly fuel the microbes to make more methane.

In addition, sedges contain hollow, air-filled tubes that allow oxygen to flow from the air to their roots. These tubes also allow the microbes' methane to escape the bog and enter the atmosphere.

"The plants are really doing two things," Neumann said. "They're providing yummy carbon that lets the microbes make more methane than they would have otherwise. The plants also provide a conduit that allows methane to escape into the atmosphere. They're a double whammy for methane production and emission."

As the Earth warms, these northern latitude regions are expected to experience more rainfall. If this rain falls in spring or early summer, these areas could release more methane into the atmosphere than is currently predicted. Neumann and her team plan to examine methane emissions from other bogs to see if this pattern holds true across northern latitudes.

"In general, the ability of rain to transport thermal energy into soils has been underappreciated," Neumann said. "Our study shows that by affecting soil temperature and methane emissions, rain can increase the ability of thawing permafrost landscapes to warm the climate."
Co-authors include Colby Moorberg at Kansas State University, who conducted this work as a UW civil and environmental engineering postdoctoral researcher; Jessica Lundquist at the UW; Jesse Turner at SMRU consulting, who conducted this work as a field technician after completing a UW oceanography undergraduate degree; Mark Waldrop and Jack McFarland at the U.S. Geological Survey; Eugénie Euskirchen and Colin Edgar at the University of Alaska Fairbanks; and Merritt Turetsky at the University of Guelph. This research was funded by the U.S. Department of Energy Office of Science and the USGS Land Change Science Program.

For more information, contact Neumann at

Grant numbers: DE-SC0010338

Photos/video available (copy and paste link into browser if clicking the hyperlink doesn't work):

Posted online at:

University of Washington

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...