Nav: Home

Scaling up search for analogies could be key to innovation

February 04, 2019

Investment in research is at an all-time high, yet the rate of scientific breakthroughs isn't setting any records. To resolve this quandary, scientists are turning to artificial intelligence and crowdsourcing for help in identifying a key inspiration for innovation -- the perfect analogy.

Wilbur Wright, for instance, famously got his idea for using wing warping to balance an airplane while twisting a cardboard box. Using similar methods to solve disparate problems is a common theme in the history of innovation. But as problems become more complex and the amount of scientific information explodes, finding helpful analogies can be difficult, said Niki Kittur, a professor in Carnegie Mellon University's Human-Computer Interaction Institute.

As described in a new report to be published online this week by the Proceedings of the National Academy of Sciences, researchers are addressing this problem by breaking down the process of identifying analogies, using crowd workers to solve individual steps in the process and training AIs to do part of the work automatically.

"We're developing new tools that could unlock a whole set of interesting possibilities," said Kittur, the lead author. "We're just beginning to see how people might use them."

If this approach proves successful, researchers need not rely on a lone genius such as Wright to find analogies. Instead, they can use a mix of individuals and AIs, each doing those portions of the work that leverage their particular strengths, said the authors, who include scientists from CMU, the Bosch Research and Technology Center in Pittsburgh, the Hebrew University of Jerusalem, the University of Maryland and New York University Stern School of Business.

Coordinating those efforts can be a challenge, they acknowledge, but better analogies could yield more efficient scientific discovery, potentially making scientific advances more profound and less incremental.

"People are really interested in how we start generating breakthroughs again," said Dafna Shahaf, assistant professor of computer science at Hebrew University of Jerusalem. "The pace of discovery is high, but does not scale with the amount of resources invested in research."

People, such as crowd workers on Amazon Mechanical Turk, have been key to the research, though AI can learn from their efforts and assume a larger role moving forward. For instance, the authors developed an AI tool that enables a designer to specify a focus of a product description and then abstract it in a targeted manner. A designer developing an adjustable soap dish, for example, could identify the focus as an extendable product for different sizes of soap. The focus could then be broadened to include different types of personal products or to accommodate dimensions such as heights or weights, rather than just length.

The researchers have shown how this approach can be extended to scientific research. That includes developing methods for novices to annotate scientific literature, which can be challenging to read and understand. Even so, nonexperts often can discern where the most important concepts and mechanisms are in these research reports, even if they don't grasp what those concepts/mechanisms mean, said Joel Chan, assistant professor of information studies at the University of Maryland.

"Knowing which parts are important buys us a lot in terms of finding subtle analogical relationships between research papers," Chan added. For example, once nonexperts isolate the parts of papers that describe their purpose or research goal, AI models can identify other papers that are about common purposes, even if they are from different topic areas.

If analogy identification can be scaled up, the potential for advances is great, said Hila Lifshitz-Assaf, assistant professor of information, operations and management sciences at NYU Stern. Waiting to be tapped are more than 9 million U.S. patents; more than 2 million product and solution ideas submitted to ideation platforms such as InnoCentive, Kickstarter, Quirky and OpenIDEO; hundreds of millions of scientific papers and legal cases searchable on Google Scholar; and billions of webpages and videos searchable on the internet.

Of course, the sheer volume of that information poses a challenge to finding and applying analogies, one of three challenges the authors identify. Another is the tendency of people to fixate on surface-level details, rather than deeper concepts that apply across fields. People considering how to treat an inoperable tumor with radiation without destroying healthy tissue, for instance, tend to focus on radiation or cancer rather than drawing inspiration from military science for multipronged assaults.

A third challenge is the sheer complexity of real-world problems, which might require solutions of several subproblems, requiring multiple analogies at multiple levels of abstraction.

Solving those challenges could usher in a new era of discovery, Kittur said, providing people with the inspiration necessary to make breakthroughs now just beyond our reach.

"It could be that the low-hanging fruit has been plucked and we just don't have the ladders to reach what remains," he explained. "AI will help us get higher into the tree, but you'll still need people to actually pick the fruit."
The National Science Foundation, Bosch, Google, the Israel Science Foundation, the HUJI Cyber Security Research Center and the Industrial Research Institute supported this research.

Carnegie Mellon University

Related Artificial Intelligence Articles:

Artificial intelligence can help some businesses but may not work for others
The temptation for businesses to use artificial intelligence and other technology to improve performance, drive down labor costs, and better the bottom line is understandable.
Artificial intelligence could help predict future diabetes cases
A type of artificial intelligence called machine learning can help predict which patients will develop diabetes, according to an ENDO 2020 abstract that will be published in a special supplemental section of the Journal of the Endocrine Society.
Artificial intelligence for very young brains
Montreal's CHU Sainte-Justine children's hospital and the ÉTS engineering school pool their expertise to develop an innovative new technology for the segmentation of neonatal brain images.
Putting artificial intelligence to work in the lab
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Artificial intelligence and family medicine: Better together
Researcher at the University of Houston are encouraging family medicine physicians to actively engage in the development and evolution of artificial intelligence to open new horizons that make AI more effective, equitable and pervasive.
Artificial Intelligence to improve the precision of mammograms
The Artificial Intelligence techniques, used in combination with evaluations by expert radiologists, improve the precision in the detection of cancer through mammograms.
Using artificial intelligence to assess ulcerative colitis
Researchers from Tokyo Medical and Dental University (TMDU) have developed an artificial intelligence system with a deep neural network that can effectively evaluate endoscopic data from patients with ulcerative colitis, which is a type of inflammatory bowel disease, without the need for biopsy collection.
Robot uses artificial intelligence and imaging to draw blood
Rutgers engineers have created a tabletop device that combines a robot, artificial intelligence and near-infrared and ultrasound imaging to draw blood or insert catheters to deliver fluids and drugs.
Artificial intelligence yields new antibiotic
Using a machine-learning algorithm, MIT researchers have identified a powerful new antibiotic compound.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at