Chitosan-graft-Polyacrylamide tested as inhibitor of hydrate formation

February 04, 2020

Currently, 90% of the hydrocarbon resources of the entire continental shelf of Russia are concentrated in the Arctic, including 70% on the shelf of the Barents and Kara Seas. Scientists understand that the shelf is a promising future, and the necessary technological basis for its future development should already be created.

Since the Arctic zone has rather severe conditions and low temperatures, and in the case of the shelf also high pressure, specialists have difficulties that greatly affect the efficiency of oil production processes; one of these problems is hydrate formation. Gas hydrates are crystalline compounds of gases and water of variable composition. They look like snow or ice and have similar physical properties. They are formed upon contact of gas and water under certain thermobaric conditions, and the colder the climate, the more often it is necessary to solve the problem with hydrate formation.

"The main means of combating hydrate formation are thermodynamic inhibitors, but they are required in large quantities, moreover, they contain environmentally harmful substances. In contrast, our reagent is devoid of these characteristics, and it can be used in a smaller volume. The low dosage of the reagent also reduces the burden on the environment. Our reagent allows you to slow down the temporary formation of hydrates and ensure the transportation of products in the right temperature range," said Mikhail Varfolomeev, Head of Ecooil Research Unit at Kazan Federal University.

A completely new type of reagent was created by KFU scientists from natural components. It is also distinguished by the fact that it is less toxic than a number of its many predecessors. Until today, nobody in the world has ever received a substance close to this in structure. In fact, with the help of this development, Kazanian scientists created their own unique concept of obtaining new reagents, pursuing two goals at the same time: to achieve effective use and not cause environmental damage. It is worth recognizing that toxic reagents are significantly inferior to those created on the basis of biodegradable materials.

"At this stage, laboratory tests are being conducted. And we hope to patent the developments in the near future in order to introduce them into the industry in the future. This process requires some time, and I think that due to the fact that the development of oil and gas in the Arctic is growing every year, our developments will be really in demand," Varfolomeev noted.

In the northern latitudes, hydrates have long been a problem: if a hydrate formation mode is established in a well or a pipeline, a hydrate plug is formed, which blocks the movement of gas or oil and leads to an accident. Another old problem associated with gas hydrates in the Arctic is frozen gas hydrates in permafrost, which begin to decompose during drilling and generate gas emissions, and this complicates the drilling process and sometimes leads to accidents at wells. Moreover, the further north the drilling rigs move, the more intensive these emissions become.

Gas hydrates are a fairly complex subject to study. Their research requires high-pressure equipment, and there are not many researchers with relevant expertise in Russia. Today we can say that the reagent created by Kazan researchers really has great prospects, being an extremely important component for the development of offshore fields in the Arctic.

Kazan Federal University

Related Arctic Articles from Brightsurf:

Archive of animal migration in the Arctic
A global archive with movement data collected across three decades logs changes in the behaviour of Arctic animals

The Arctic is burning in a whole new way
'Zombie fires' and burning of fire-resistant vegetation are new features driving Arctic fires -- with strong consequences for the global climate -- warn international fire scientists in a commentary published in Nature Geoscience.

Warming temperatures are driving arctic greening
As Arctic summers warm, Earth's northern landscapes are changing. Using satellite images to track global tundra ecosystems over decades, a new study found the region has become greener, as warmer air and soil temperatures lead to increased plant growth.

Arctic transitioning to a new climate state
The fast-warming Arctic has started to transition from a predominantly frozen state into an entirely different climate with significantly less sea ice, warmer temperatures, and more rain, according to a comprehensive new study of Arctic conditions.

New depth map of the Arctic Ocean
An international team of researchers has published the most detailed submarine map of the Artic Ocean.

Where are arctic mosquitoes most abundant in Greenland and why?
Bzz! It's mosquito season in Greenland. June and July is when Arctic mosquitoes (Aedes nigripes) are in peak abundance, buzzing about the tundra.

What happens in Vegas, may come from the Arctic?
Ancient climate records from Leviathan Cave, located in the southern Great Basin, show that Nevada was even hotter and drier in the past than it is today, and that one 4,000-year period in particular may represent a true, ''worst-case'' scenario picture for the Southwest and the Colorado River Basin -- and the millions of people who rely on its water supply.

Arctic Ocean changes driven by sub-Arctic seas
New research explores how lower-latitude oceans drive complex changes in the Arctic Ocean, pushing the region into a new reality distinct from the 20th-century norm.

Arctic Ocean 'regime shift'
Stanford scientists find the growth of phytoplankton in the Arctic Ocean has increased 57 percent over just two decades, enhancing its ability to soak up carbon dioxide.

Spider baby boom in a warmer Arctic
Climate change leads to longer growing seasons in the Arctic.

Read More: Arctic News and Arctic Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to