Kidney stem cells can be isolated from urine

February 04, 2020

Researchers from the Institute for Stem Cell Research and Regenerative Medicine (ISRM) at the medical faculty of Heinrich Heine University-Duesseldorf under the directorship of Prof. Dr. James Adjaye have developed a protocol for the reproducible isolation and characterization of kidney stem cells, urine derived renal progenitor cells (UdRPCs) from donors of distinct ages, gender and ethnicity. The study is published online: Nature Press, Scientific Reports.

Kidneys are involved in many crucial functions such as (i) maintaining balanced levels of fluids in the body, (ii) filtering waste materials from food, medications, and toxic substances, (iii) regulating blood pressure.

There is an increasing prevalence of kidney-associated diseases worldwide. Approximately, 19-26% of cases of acute kidney injury (AKI) are induced by nephrotoxic drugs. AKI ultimately progresses to chronic kidney disease (CKD) and an increased risk of mortality. Diabetes mellitus, systemic hypertension, and glomerulopathies are the main causes of CKD.

CKD is a global health and economic burden and is an independent risk factor for cardiovascular disease-CVD. Due to the shortage of compatible organ donors, stem cell-based therapies are considered as alternative treatment options for kidney-associated diseases. To date, several adult stem cell sources have been established from bone marrow, cord blood and amniotic fluid. Although these sources harbor stem cells with great regenerative potential there are some limitations. Cord blood and amniotic fluid can only be accessed before and at birth and bone marrow requires invasive-procedures associated with risks and pain for the patient. Kidney biopsies are used to derive human kidney cells for research purposes.

On a daily basis, approximately 2,000 to 7,000 cells are flushed out from our kidneys into our urine. Although several laboratories have shown that urine represents an alternative source of kidney stem cells, a comprehensive molecular and cellular analyses of these cells have so far been limited. In our study, urine-derived renal progenitor cells (UdRPCs) were isolated from 10 individuals of both genders and distinct ages. We show that UdRPCs express typical markers seen in bone marrow-derived mesenchymal stem cells (MSCs) and in addition they express the renal stem cell markers- SIX2, CITED1, WT1, CD24 and CD106. UdRPCs can be differentiated into cell types present in the kidney; proximal-, distal-tubules and podocytes.

Wasco Wruck, Bioinformatician and co-author of the study, says,"It is amazing that these valuable cells can be isolated from urine and comparing all the genes expressed in UdRPCs with that derived from kidney biopies we could confirm their renal and renal progenitor cell properties and origin". Remarkably, UdRPCs resemble and are similar to amniotic fluid-derived stem cells (AFCs) which we previously isolated from third trimester amniotic fluid, this further provides evidence in support of urine as the origin of UdRPCs says Shaifur Rahman, first author of this study. Furthermore, UdRPCs can also be easily and efficiently reprogrammed into induced pluripotent stem cells using a non-viral integration-free and safe method- says Martina Bohndorf also co-author of this work.

According to the International Society of Nephrology, more than 850 million people worldwide are afflicted with kidney diseases, which raises the quest for alternative therapies to overcome the limitations associated with current treatments options such as organ transplantation and dialysis. Prof. Dr. James Adjaye, senior author says- one of the most promising options in the near future is the use transplantable renal stem cells (UdRPCs) for treatment of kidney diseases as a complementary option to kidney organs of which donors are scarce. Human UdRPCs should be considered as the choice of renal stem cells for facilitating the study of nephrogenesis, nephrotoxicity, disease modelling and drug development.
-end-
Reference: Md Shaifur Rahman, Wasco Wruck, Lucas-Sebastian Spitzhorn, Lisa Nguyen,Martina Bohndorf, Soraia Martins, Fatima Asar, Audrey Ncube, Lars Erichsen, Nina Graffmann & James Adjaye (2020).

The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Scientific Reports- https://www.nature.com/articles/s41598-020-57723-2

Heinrich-Heine University Duesseldorf

Related Stem Cell Articles from Brightsurf:

Fat cell hormone boosts potential of stem cell therapy
Mesenchymal stem cell (MSC) therapy has shown promising results in the treatment of conditions ranging from liver cirrhosis to retinal damage, but results can be variable.

Oncotarget Characterization of iPS87, a prostate cancer stem cell-like cell line
Oncotarget Volume 11, Issue 12 reported outside its natural niche, the cultured prostate cancer stem cells lost their tumor-inducing capability and stem cell marker expression after approximately 8 transfers at a 1:3 split ratio.

Stem cell identity unmasked by single cell sequencing technology
Scientists from The University of Queensland's Diamantina Institute have revealed the difference between a stem cell and other blood vessel cells using gene-sequencing technology.

It's all about the (stem cell) neighborhood
Researchers at Duke-NUS Medical School have now identified how the stem cell neighbourhood, known as a niche, keeps stem cells in the gut alive.

Spaceflight activates cell changes with implications for stem cell-based heart repair
A new study of the effects of spaceflight on the development of heart cells identified changes in calcium signaling that could be used to develop stem cell-based therapies for cardiac repair.

Not just a stem cell marker
The protein CD34 is predominantly regarded as a marker of blood-forming stem cells but it helps with migration to the bone marrow too.

Interferon-beta producing stem cell-derived immune cell therapy on liver cancer
Induced pluripotent stem (iPS) cell-derived myeloid cells (iPS-ML) that produce the anti-tumor protein interferon-beta (IFN-beta) have been produced and analyzed by researchers from Kumamoto University, Japan.

Scientists aim to create the world's largest sickle cell disease stem cell library
Scientists at the Center for Regenerative Medicine at Boston Medical Center and Boston University School of Medicine are creating an induced pluripotent stem cell (iPSC)-based research library that opens the door to invaluable sickle cell disease research and novel therapy development.

Designer switches of cell fate could streamline stem cell biology
Researchers at the University of Wisconsin-Madison have developed a novel strategy to reprogram cells from one type to another in a more efficient and less biased manner than previous methods.

Allen Institute for cell science releases gene edited human stem cell lines
The Allen Institute for Cell Science has released the Allen Cell Collection: the first publicly available collection of gene edited, fluorescently tagged human induced pluripotent stem cells that target key cellular structures with unprecedented clarity.

Read More: Stem Cell News and Stem Cell Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.