Nav: Home

A never-before described natural process in soil can convert nitrogen gases into nitrates

February 04, 2020

Researchers from the Higher Technical School of Agricultural Engineering at the University of Seville, together with a group of international experts, have just published a scientific article in which they demonstrate that some soil minerals can convert the nitrogen gases NO + NO2 (NOX) into nitrates by means of visible and ultraviolet radiation. This natural process had not previously been described and demonstrates, according to the data obtained, that solar light seems to be the missing piece in the puzzle of the nitrogen cycle in soil.

"This finding is important, not only because it involves a never-before described natural process, as we have said, but also because the nitrogen in the soil is crucial for global sustainability, as it affects the productivity of the ecosystem and air quality for living organisms, including humans. In addition, nitrogen is connected to the emission of greenhouse gases (GHG) and global warming. It is worth highlighting that NO in soil is the main precursor of N2O, an important GHG", reports the University of Seville teacher and author of the study, Antonio Delgado.

Despite the basic processes in the nitrogen cycle in nature being known for more than a hundred year, in this article, some photocatalytic mechanisms are proposed that were previously unknown. The project shows that solar radiation (especially ultraviolet) can activate soil minerals, so generating reactive types of oxygen (free radicals) that can transform NOx gases into nitrates, and vice versa.

How to maximise the functions of agricultural soil

Parallel to this finding, the research group led by Delgado, has collaborated on the development of a decision-making tool for the improvement of soil function in agriculture. This tool, which is currently available in various languages of the European Union and which will soon be translated into Spanish and adapted to the conditions in Spain, makes it possible for farmers and technicians to choose the best options for maximising each of the five soil functions: productivity, nutrient recycling, water purification and regulation, biodiversity and mitigation of climate change. This tool will also be useful for making policy decisions that affect how current social demand can be met by agriculture. In the tool, in which data regarding soil, climate, and agricultural-exploitation management must be included, the most advisable options for maximising the five soil functions appear.

'Soilnavigator' is one of the most important results of the European project LAND Management: Assessment, Research, Knowledge base (LANDMARK). Within this project, a scientific framework has been drawn up for legislators that can serve as a base for the preparation of valid regulations for all of Europe. Twenty-two institutions from 14 European countries, as well as Switzerland, Brazil and China, participated in the project.
-end-
The article was available online from 2nd November 2019, but the printed version just came out on 1st February 2020.

University of Seville

Related Nitrogen Articles:

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.
A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.
How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.
Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.