Polymer-derived carbon as metal-free, "green" alternative to catalysts and nano carbons

February 04, 2021

Catalysts are key materials in modern society, enabling selective conversion of raw materials into valuable products while reducing waste and saving energy. In case of industrially relevant oxidative dehydrogenation reactions, most known catalyst systems are based on transition metals such as Iron, Vanadium, Molybdenum or Silver. Due to intrinsic drawbacks associated with the use of transition metals, such as rare occurrence, environmentally harmful mining processes, and toxicity, the fact that pure carbon exhibits catalytic activity in this type of reaction and thus has high potential as a sustainable substitution material is of high interest.

To date, the development of carbon-based catalysts for oxidative dehydrogenation reactions may be divided into two generations. The first generation of carbon catalysts was inspired by the discovery of the catalytic activity of coke deposits on metal-based catalysts for oxidative dehydrogenation. Subsequently, mainly amorphous carbon materials such as activated carbon or carbon black were investigated. Although these early catalysts exhibited significant activity and selectivity, they suffered from insufficient oxidation stability and were later succeeded by the second generation of carbon-based dehydrogenation catalysts represented by carbon nanomaterials,e.g. carbon nanotubes. The advantage of nanocarbons over the amorphous catalysts of the first generation primarily stems from their crystalline microstructure, which is on one hand responsible for an adequate oxidation resistance and enables high redox activities on the other. Since nanocarbons lack internal porosity, these active sites are located on the outer surface, making them readily accessible to reactants. However, nano carbons show drawbacks of such during handling as powder and fixed beds or unclear health risks and thus they are still awaiting industrial application as catalytic material.

Considering the high potential of carbon catalysts in oxidative dehydrogenation reactions, the research group of Professor Bastian J. M. Etzold has been working for several years on the synthesis of new classes of carbon with the aim of transferring the excellent catalytic properties of nanocarbons to conventional, easy-to-handle carbon materials. As early as 2015, it was shown that carbide-derived carbons can in principle be used to achieve similar catalytic properties to carbon nanomaterials (Chem. Mater. 2015, 27, 5719.). However, since carbide-derived carbons are only model materials for research purposes due to their complex synthesis, the fundamental research goal of developing a scalable and reproducible synthetic route to technically useful carbon catalysts remained. In collaboration with Professor Wei Qi from the Shenyang National Laboratory of Material Science in Shenyang, PR China, as well as Professor Jan Philipp Hofmann from the Surface Science Laboratory at TU Darmstadt, Felix Herold, a PhD student in the Etzold group, has now succeeded in synthesizing a new generation of carbon catalysts that is superior to nanocarbons in many respects.

The synthesis of the novel carbon catalysts is based on polymeric carbon precursors that can be produced by a reproducible and easily scalable synthetic pathway while providing excellent control of the morphology of the subsequent carbon. Using catalytic graphitization, it was demonstrated that during pyrolysis of the polymer precursor, nanoscale graphite crystallites could be grown within the carbon matrix. Fundamental in this context seems to be the presence of large conjugated (graphitic) domains characterized by a high density of defect sites, where oxygen surface groups, such as ketonic carbonyl groups, are created during the reaction. The activity of these surface groups seems to be increased through the neighboring conjugated (graphitic) domains, which can act as electron storage. Catalytic graphitization yields an amorphous/graphitic hybrid material consisting of the prior grown graphite crystallites surrounded by an amorphous carbon matrix. To obtain an active dehydrogenation catalyst, the amorphous carbon matrix is removed by selective oxidation, opening the pore structure of the carbon material and providing accessibility to the catalytically active graphite domains.

The oxidative dehydrogenation of ethanol was chosen as a test reaction of great practical interest since it provides a catalytic link between bioethanol, which can be readily obtained from renewable resources, and acetaldehyde, an important intermediate in current industrial chemistry. Compared to a benchmark carbon nanotube catalyst, up to 10 times higher space-time yields could be achieved with the new class of carbon materials.

The novel carbon catalysts presented in this work are of great significance, as they open the door to a new class of materials, the potential of which is yet to be assessed due to multiple optimization possibilities of the flexible synthetic route. In addition to the use of the novel class of carbon catalysts in the oxidative dehydrogenation of other relevant substrates, such as alkanes and other alcohols, it is also expected that the scope of application will be extended to electro- and photocatalysis.
The publication:

Nanoscale Hybrid Amorphous/Graphitic Carbon as Key Towards Next-Generation Carbon-based Oxidative Dehydrogenation Catalyst, F. Herold, S. Prosch, N. Oefner, K. Brunnengräber, O. Leubner, Y. Hermans, K. Hofmann, A. Drochner, J. P. Hofmann, W. Qi and B. J. M. Etzold, Angew. Chem. Int. Ed., DOI: 10.1002/anie.202014862

About TU Darmstadt

The Technical University (TU) of Darmstadt is one of Germany's leading technical universities. TU Darmstadt incorporates diverse science cultures to create its characteristic profile. The focus is set on engineering and natural sciences, which cooperate closely with outstanding humanities and social sciences. Three research fields shape the profile of TU Darmstadt: I+I (Information and Intelligence), E+E (Energy and Environment) and M+M (Matter and Materials). We dynamically develop our portfolio of research and teaching, innovation and transfer, in order to continue opening up important opportunities for the future of society. Our 312 professors, about 4,500 scientific and administrative employees and about 25,400 students devote their talents and best efforts to this goal. In the UNITE! network, which unites universities from seven European countries, the TU Darmstadt is promoting the idea of the European university. Together with Goethe University Frankfurt and Johannes Gutenberg University Mainz, TU Darmstadt has formed the strategic Rhine-Main Universities alliance.

MI-No. 07be/2021, Etzold/Herold/sip

Technische Universitat Darmstadt

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.