Molecule from nature provides fully recyclable polymers

February 04, 2021

Plastics are among the most successful materials of modern times. However, they also create a huge waste problem. Scientists from the University of Groningen (The Netherlands) and the East China University of Science and Technology (ECUST) in Shanghai produced different polymers from lipoic acid, a natural molecule. These polymers are easily depolymerized under mild conditions. Some 87 per cent of the monomers can be recovered in their pure form and re-used to make new polymers of virgin quality. The process is described in an article that was published in the journal Matter on 4 February.

A problem with recycling plastics is that it usually results in a lower-quality product. The best results are obtained by chemical recycling, in which the polymers are broken down into monomers. However, this depolymerization is often very difficult to achieve. At the Feringa Nobel Prize Scientist Joint Research Center, a collaboration between the University of Groningen and ECUST, scientists developed a polymer that can be created and fully depolymerized under mild conditions.


'We found a way to produce polymers from the natural molecule lipoic acid in a very controlled way,' explains Ben Feringa, Professor of Organic Chemistry at the University of Groningen. 'It is a beautiful molecule and a perfect building block that was created by nature.' The molecule has a ring structure that includes a sulphur-sulphur bond. When this bond is broken, the sulphur atoms can react with those of another monomer. 'This process was known before, but we managed to find a way to control it and to create long polymers.'

The molecule also has a carboxyl group, which readily reacts with metal ions. These can crosslink the polymers, which results in an elastic material. By dissolving the molecule in water with sodium hydroxide and then evaporating the water, a firmer polymer film is produced through ionic bonds. As the polymerization is achieved through reversible bonds, the material is also self-healing, explains Feringa: 'When it is cut, you can simply press the ends together and they will reconnect in a few minutes.'

Fully reversible Most of the work in the Materials paper was carried out by Qi Zhang, first as a PhD student at ECUST in Shanghai and later as a postdoctoral researcher at the University of Groningen. 'Lipoic acid is a natural small molecule with an elegant structure,' he says. 'We didn't have to do any tedious re-designing of the monomer to achieve a fully reversible polymerization.' Simply exposing the polymers to sodium hydroxide dissolves the polymers into monomers. 'By adding a little acid, the monomers precipitate and can be recovered. The quality of these recycled monomers is identical to that of the original material.'

'Our experiments show what is possible with these monomers,' adds Feringa. 'We can even recycle the material into monomers several times, without loss of quality.' However, industrial applications of this new polymer are a long way off. Feringa: 'This is a proof of principle. We are conducting experiments now to create polymers with new functionalities and to better understand the polymerization and depolymerization processes.' Furthermore, although 87 per cent of the monomers can already be recovered, the scientists want to get as close to a hundred per cent as possible. 'Our experiments show that we can produce, in a controlled fashion, hard and soft, elastic polymers that can be fully depolymerized,' Feringa sums up. 'This molecule is really very promising.'

The work that was described in the Matter article was carried out at the Feringa Nobel Prize Scientist Joint Research Center. The Research Institute is led by 2016 Nobel laureate in Chemistry Ben Feringa and Professors Da-Hui Qu and He Tian. Feringa received an honorary professorship at ECUST in November 2016. The Feringa Nobel Prize Scientist Joint Research Center was officially opened in October 2017.

Simple Science Summary

Plastics are made of long molecules called polymers. These polymers are chains of smaller building blocks, the monomers. A problem with the recycling of plastics is that the polymers must be broken down into monomers. This depolymerization often reduces the quality of the monomers. Scientists from China and the Netherlands have now found a way to produce polymers (plastics) from a natural monomer called lipoic acid. These polymers can be broken down under mild conditions without a loss of quality. Some 87 per cent of the monomers can be recovered and then reused several times over. This shows that it is possible to create fully recyclable plastics.

Reference: Qi Zhang, Yuanxin Deng, Chen-Yu Shi, Ben L. Feringa, He Tian and Da-Hui Qu: Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides) Matter 4 February 2021.

University of Groningen

Related Polymers Articles from Brightsurf:

Seeking the most effective polymers for personal protective equipment
Personal protective equipment, like face masks and gowns, is generally made of polymers.

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Read More: Polymers News and Polymers Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to