Role of cell cycle on analyzing telomerase activity with a fluorescence off-on system

February 04, 2021

Cancer is a significant cause of death worldwide and many efforts have been devoted to the development of methods for early detection. Telomerase are considered as a tumor biomarker for early diagnosis because the telomerase of more than 80% immortalized cells are reactivated and provides the sustained proliferative capacity of these cells, but the telomerase activity are not detectable in normal somatic cells. Telomerase is a ribonucleoprotein complex that is thought to add telomeric repeats onto the ends of chromosomes during the replicative phase (S phase) of the cell cycle.

Recently, Xia Wu, Jun Wu, Feng Wu, Xiaoding Lou, Fan Xia from the China University of Geosciences and Jun Dai, Biao Chen, Zhe Chen, Shixuan Wang from Huazhong University of Science and Technology made exciting progress and investigated the role of cell cycle progression on analyzing telomerase activity in cancer cells based on an AIEgen-based fluorescence detecting system. The fluorescence signal of cancer cells gradually increased from G0/G1, G1/S to S phase. In contrast, both cancer cells arrested at G2/M phase and normal cells exhibited the negligible fluorescence intensities, which demonstrates that future studies on tumor biomarkers analyzing, such as TERT mRNA and telomerase activity should consider the phase of cell cycle.

First, PyTPA-DNA and Silole-R bioprobe were used to investigate the expression of TERT mRNA and telomerase activity under different cell cycle of HeLa cells. Upon progression through the cell cycle, the PyTPA-DNA faintly fluoresced in G0/G1 stage but demonstrated an enhancement of fluorescence when responded to G1/S phase, finally reached the strongest output in S stage. However, cells arrested at G2/M phase showed the weakest fluorescence in contrast to the other three cell cycle. Furthermore, cell cycle-dependent alterations of TERT mRNA expression in HeLa cells was reconfirmed by qPCR. The similar responses of telomerase activity were also given by evaluated with using Silole-R bioprobe in different cell cycle. Moreover, TRAP assay was selectively analyzed and found to be the strongest expression levels in S stage.

Second, the intracellular imaging of TERT mRNA and telomerase activity during different stages of cancer cell cycle also demonstrated that the cell cycle has dramatic effects on the localization of TERT mRNA and telomerase activity, which S phase-specific boost and G2/M phase-specific reduce of TERT mRNA and telomerase activity in human cancer cells.

Then, the expression level of TERT mRNA and telomerase activity in different period of HeLa cells were compared with human lung fibroblasts (HFL-1) cells (normal cells) and found that somatic cells have almost no activation of telomerase during three phase of cell cycle. The level of TERT mRNA and active telomerase in most phases of cell cycle (G0/G1, G1/S, S) are above normal cells, while, cells arrested in G2/M phase exhibited almost the same level of normal cells.

In addition, a map of transcriptome information during different phases of cell cycle was performed. The parameters of CA9, CDKN1A, TK1 and EGFR were significantly elevated in G1/S stage and the activities of KRAS, CYC1 and PLOD3 were remarkably weakened in G0/G1 and G1/S phases. These results indicated that different tumor markers were highly diversified and varied in functions of different cell cycle.

It is worth noting that cell cycle served as a major role for the cellular processes and held the ability to modulate various biomarkers. These results, therefore, suggested that future studies on tumor biomarkers analyzing, such as TERT mRNA and telomerase activity should consider the phase of cell cycle.
This research received funding from the National Key R&D Program of China (2020YFA0211200), the National Natural Science Foundation of China (21722507, 21525523, 21974128, 21874121), the Natural Science Foundation of Hubei Province (2019CFA043), the project funded by China Postdoctoral Science Foundation (2020M672436) and the Hubei Postdoctoral Innovative Research Foundation (to Jun Wu).

See the article:

Xia Wu, Jun Wu, Jun Dai, Biao Chen, Zhe Chen, Shixuan Wang, Feng Wu, Xiaoding Lou and Fan Xia
Role of cell cycle progression on analyzing telomerase in cancer cells based on aggregation-induced emission luminogens
Natl Sci Rev,2021, doi: 10.1093/nsr/nwaa306

Science China Press

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to