Knots Of Evaporating Gas In Supernova Remnant Support Theory

February 04, 1999

CHAMPAIGN, Ill. -- The expanding shock wave of a supernova remnant in the Large Magellanic Cloud has provided strong evidence to support a popular model of the interstellar medium, says a University of Illinois astronomer who directed an international team studying the object.

"One theory concerning the global structure of the interstellar medium says that supernova shock waves will interact with the cold gas and dust of the interstellar medium, eventually forming three distinct temperature phases," said You-Hua Chu, a U. of I. professor of astronomy. "Although this 'three-phase model' has been popular for the past 20 years, no one had found convincing evidence for one of the model's basic tenets -- a cold cloud evaporating in the hot medium."

To study the supernova remnant -- called N63A, Chu and her colleagues obtained optical images from the Hubble Space Telescope and high-resolution X-ray images from the ROSAT X-ray telescope. "The X-ray observations reveal the full extent of this huge supernova remnant," Chu said, "but the optical images show the features we are most interested in."

Among those features are three bright clouds of gas and dust, similar in size to the Orion Nebula. Two of the clouds show distinct filamentary structures indicative of shock-wave compression, Chu said. The outward rushing shock wave has not yet reached the third, most distant cloud.

Numerous shocked cloudlets -- smaller clumps of gas embedded in the interstellar medium -- also were detected within the supernova remnant. "Swept back by high-velocity shock waves, these evaporating cloudlets provide clear support for the three-phase model," said Chu, who presented the team's findings at the American Astronomical Society meeting, held Jan. 5-9 in Austin, Texas.

After a massive star is formed, its stellar wind blows much of the surrounding interstellar medium away, creating a huge shell in space called an interstellar bubble. "Because the interstellar medium is not homogeneous, the denser knots of material [cloudlets] are left behind," Chu said. "The optical emission region of this supernova remnant appears the way it does because the supernova exploded inside an interstellar bubble in a cloudy medium."

The supernova remnant lies in the Large Magellanic Cloud, a small neighboring galaxy to our own Milky Way, about 160,000 light-years from Earth.

In addition to Chu, collaborators on the project included astronomer John Dickel, visiting researcher Adeline Caulet, and graduate students Sean Points and Rosa Williams (all at the U. of I.); astronomer Margarita Rosado and graduate student Lorena Arias-Montano at the Universidad Nacionale Autonoma de Mexico; astronomer Annie Laval and graduate student Patricia Ambrocio-Cruz at the Marseille Observatory; and astronomer Dominik Bomans at the University of Bochum in Germany.

University of Illinois at Urbana-Champaign

Related Supernova Articles from Brightsurf:

Scientists discover supernova that outshines all others
A supernova at least twice as bright and energetic, and likely much more massive than any yet recorded has been identified by an international team of astronomers, led by the University of Birmingham.

Supernova observation first of its kind using NASA satellite
Their research, detailed in the Monthly Notices of the Royal Astronomical Society, represents the first published findings about a supernova observed using TESS, and add new insights to long-held theories about the elements left behind after a white dwarf star explodes into a supernova.

Astronomers find possible elusive star behind supernova
Astronomers may have finally found a doomed star that seemed to have avoided detection before its explosive death.

Stellar thief is the surviving companion to a supernova
Hubble found the most compelling evidence that some supernovas originate in double-star systems.

Supernova may have 'burped' before exploding
Only by increasing the rate at which telescopes monitor the sky has it been possible to catch more Fast-Evolving Luminous Transients (FELTs) and begin to understand them.

An unusual white dwarf may be a supernova leftover
Astronomers have identified a white dwarf star in our galaxy that may be the leftover remains of a recently discovered type of supernova.

Researchers show how to make your own supernova
Researchers from the University of Oxford are using the largest, most intense lasers on the planet, to for the first time, show the general public how to recreate the effects of supernovae, in a laboratory.

The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.

Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.

Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion

Read More: Supernova News and Supernova Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to