Synthetic Lock Binds Some Molecules, Excludes Others

February 04, 1999

CHAMPAIGN, Ill. -- One of Mother Nature's most important talents is the ability to distinguish one molecule from another. Like locks accepting keys, proteins function by being able to let one particularly shaped molecule inside while barring other shapes from entering.

The idea of molecular locks and keys goes back a hundred years, but it is only now that chemists have made progress in making artificial receptors with high selectivity. Professor Ken Suslick and his colleagues at the University of Illinois recently have designed and built synthetic locks that can bind straight, skinny molecules but block out bent or fat ones. These synthetic receptors are intended for use as molecular sensors and selective catalysts.

"Molecules are the messengers between cells and even between whole organisms," said Suslick, the William H. and Janet Lycan Professor of Chemistry at the U. of I. "The cells understand these messages by recognizing these messenger molecules, often on the basis of their shape."

At the heart of Suslick's synthetic lock is a metalloporphyrin (a metal ion bound in the middle of a molecular ring), much like the iron compound found in the hemoglobin in blood. To this core are attached dendrimers (branching polymers) that spread out like limbs on a tree.

"Depending on where the dendrimers are placed, the resulting receptor has either a big round hole or a narrow chimney above and below the metal ion," Suslick said. "The shape of these pockets determines the shape of molecules that can bind to the metal. The chimney-shaped pocket only lets in straight, narrow molecules, while the round hole lets in fat or bent-shaped molecules."

As reported in the Jan. 12 issue of the Journal of the American Chemical Society, Suslick and his colleagues have been able to change the binding strength of various molecules to the metal at the center of these artificial receptors.

"Just the shape of an incoming molecule can change its binding by almost a million-fold," Suslick said. "Such exquisite selectivity is very much the way that living systems control chemical reactions."

It is also the way that industrial chemists manipulate many chemical feedstocks. For example, the improvement of octane ratings in gasoline often makes use of shape-selective catalysts called zeolites that can select for the formation of high-octane molecules during the reforming of crude oil based on the molecular shape.

Suslick and his research group are interested in using such synthetic receptors as shape-selective catalysts and sensors. For example, by controlling access of molecules by their shape, oxidation can be carefully directed to specific sites in complex molecules. As another example, the ability to detect molecules on the basis of their shapes is extremely important in the development of artificial noses and other chemical sensors.

University of Illinois at Urbana-Champaign

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to