Nanomicroscopy reveals the collective transport of gold atoms in real-time

February 05, 2007

Researchers at Delft University of Technology used a High Resolution Electron Microscope to observe in real-time the collective transportation of gold atoms in a thin layer. This research illustrates the rapid progress that is currently being made by real-time nano-microscopy. Within 5 years this research area should be able to take the step from the laboratory to realistic conditions, and this will open up a wealth of possibilities for industry and the medical world.

In this research project, which was conducted by Delft University of Technology's Kavli Institute of Nanoscience, a small group of gold atoms were placed on a gold surface. The Delft researchers then used a High Resolution Electron Microscope (HREM) to show in real-time how this group of atoms collectively sank into the underlying layer of atoms (see the short film at http://virtuallab.nano.tudelft.nl/movies/audis/) and then became arranged in the shape of a surface dislocation (which is an extra row of atoms that is 'squeezed' between the other rows of atoms). At a later stage, the dislocation disappears, as if a string of beads has been pulled away lengthwise. According to Professor Henny Zandbergen, this is the first time that such a phenomenon has been observed in real-time. This was possible due to the progress that has been made in recent years in image-forming techniques and the processing of the data.

Atomic calculations validated and certified the observation mechanism: for this, Delft University of Technology worked in close cooperation with Princeton University (USA). The research results were published in Physical Review Letters. According to Professor Zandbergen, the observable manner in which the atoms arranged themselves in the underlying layer and the movement of the dislocation (see film) is, in principle, an attractive way of transporting materials from the upper layer to the underlying layer and also within the underlying layer. Normally - and as comprehensively detailed in scientific literature - before an atom can 'hop' from one layer to the underlying layer, certain energy barriers exist. But such barriers do not exist with this manner of transport. The findings of this TU Delft research project clearly indicate that when people are modelling the (industrial) production of thin layers, they must also consider this type of collective processes.

Zandbergen's research is a typical example of the rapid progress currently being made by nano-microscopy, or nano-imaging. Nano-microscopy - the observation of individual atoms or molecules - is becoming increasingly more accurate and faster. It is now possible to observe the movements of atoms in real-time, and this allows the position of the atoms to be determined with great precision (approximately 0.01 nm). So far, this has primarily been observed under laboratory conditions. But soon live nano-imaging will take the next step to realistic and industrial conditions: real-life, real-time nano-imaging.

This will open up a wealth of possibilities for all kinds of medical and industrial applications, especially for those that involve a combination of various nano-imaging technologies and conventional optical microscopy. This will allow information about the different length scales to be combined. It will then be possible to follow the biological processes very realistically, and this will also provide many excellent opportunities for industry. One example is catalysis research. Real-life, real-time nano-imaging allows for closer observation of the catalysis processes, with the logical consequences of this being better catalysts and more efficient chemical processes. In the Netherlands, Delft University of Technology, Leiden University and the microscope manufacturing company FEI, are conducting joint research in nano-microscopy.
-end-
The short film about the collective transport of gold atoms can be viewed at: http://virtuallab.nano.tudelft.nl/movies/audis/. The article in Physical Review Letters is available at: http://dx.doi.org/10.1103/PhysRevLett.98.036103.

Delft University of Technology

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.