Sodium carbonate capsules used to capture carbon safely

February 05, 2015

Using the same baking soda found in most grocery stores, Lawrence Livermore scientists, along with colleagues from Harvard University and the University of Illinois at Urbana-Champaign, have created a significant advance in carbon dioxide capture.

The team developed a new type of carbon capture media composed of core-shell microcapsules, which consist of a highly permeable polymer shell and a fluid (made up of sodium carbonate solution) that reacts with and absorbs carbon dioxide (CO2). Sodium carbonate is typically known as the main ingredient in baking soda. The capsules keep the liquid contained inside the core, and allow the CO2 gas to pass back and forth through the capsule shell.

To date, microcapsules have been used for controlled delivery and release (e.g., pharmaceuticals, food flavoring, cosmetics, agriculture, etc.) -- but this is the first demonstration of using this approach for controlled CO2 capture and release.

The aim of carbon capture is to prevent the release of large quantities of CO2 -- a greenhouse gas that traps heat and makes the planet warmer -- into the atmosphere from fossil fuel use in power generation and other industries.

However, currently used methods, while successful, can be harmful to the environment. The ability to move away from caustic fluids, such as monoethanol amine to capture CO2, to more environmentally benign ones, like carbonates, is a key attribute of the team's research.

"Our method is a huge improvement in terms of environmental impacts because we are able to use simple baking soda - present in every kitchen - as the active chemical," said Roger Aines, one of the Lawrence Livermore team members. "Corrosiveness also is improved because the chemical is more benign and always is encapsulated. Putting the carbonate solution inside of the capsules allows it to be used for CO2 capture without making direct contact with the surface of equipment in the power plant, as well as being able to move it between absorption and release towers easily, even when it absorbs so much CO2 that it solidifies."

Unlike more caustic sorbents used in capturing CO2, the microcapsules only react with the gas of interest (in this case CO2).

"Encapsulation allows you to combine the advantages of solid capture media and liquid capture media in the same platform," said Jennifer Lewis of Harvard School of Engineering and Applied Sciences, and key author of a paper appearing in the Feb. 5 edition of the journal, Nature Communications.

Encapsulation also dramatically increases absorption compared to traditional carbon capture techniques. "It's all about surface area," Aines said. "The capsules force the baking soda to stay in little tiny droplets (an order of magnitude smaller than a drop of amines would take on) and little drops react faster because they contact more of the CO2."

Aines said this will require a new kind of capture process, which Livermore is working on with the National Energy Technology Laboratory (NETL). The encapsulation process was developed as one of the Department of Energy's inaugural Advanced Research Projects Agency-Energy (ARPA-E) innovative carbon capture projects.

The new process can be designed to work with coal or natural gas-fired power plants, as well as in industrial processes like steel and cement production.

The technique is not a short-term solution to carbon capture, but a broad, sustainable approach. The sodium carbonate used in the process is mined domestically, rather than being made in a complex chemical process like the current technology (amines). In addition, baking soda has no recycling or degradation issues. "It can be reused forever, while amines break down in a period of months to years," Aines said.

"We think the microcapsule technology provides a new way to make carbon capture efficient with fewer environmental issues," he said. "Capturing the world's carbon emissions is a huge task. We need technology that can be applied to many kinds of carbon dioxide sources with the public's full confidence in its safety and sustainability."
Other members of the Livermore team include John Vericella, Sarah Baker, Joshuah Stolaroff, Eric Duoss, James Lewicki, William Floyd, Carlos Valdez, William Smith, Joe Satcher Jr., William Bourcier and Chris Spadaccini.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

DOE/Lawrence Livermore National Laboratory

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to