Nav: Home

Islands in yeast membrane revealed by extreme microscopy

February 05, 2018

University of Groningen microbiologists have visualized tiny islands in the cell membrane of baker's yeast. These membrane compartments appear to store transport proteins before use. The scientists observed that these proteins move extremely slowly in the plasma membrane of the yeast and discovered how they travel through the membrane to reach the islands. They made these observations with state-of-the-art super-resolution optical microscopy. The results were published in Nature Communications on 5 February.

Until some ten years ago, text books on cell biology would show the cellular membrane as a homogenous lipid bilayer with randomly inserted membrane proteins. But this view changed significantly with the discovery of different phases in the membrane of mammalian cells. The lipid composition can differ on 'islands' in the membrane, and this affects the protein distribution. However, very little was known about similar structures in yeast cells.

Synthetic cell

'Electron-microscopy studies from back in the 1960s show depressions in the yeast membrane, but they were not studied in detail and were dismissed as artefacts of sample preparation', explains University of Groningen Professor of Biochemistry Bert Poolman. 'Then, about ten years ago, these depressions were rediscovered. Scientists observed banana-shaped proteins attached to the inner side of the membrane, and they turned out to be responsible for these depressions, which were named eisosomes.'

Poolman decided to study these depressions in the yeast membrane for a number of reasons. 'We are deeply involved in a project to build a synthetic cell from molecular components. So we need to know a lot about the membrane and how to get our hands on membrane proteins.' Furthermore, the eisosomes are the preferential location of a number of transport proteins that the industry partners of Poolman's research group are interested in.

Transporters

By using different fluorescent markers to label both the transport proteins in the membrane and the banana-shaped proteins on the inner side, the Poolman group could determine which proteins are co-localized with the eisosomes. As the depression is only some 50 nanometres deep, and the eisosomes are a maximum of 150 by 100 nanometres in dimension, this required an extremely high resolution. 'Fortunately, our lab has a set of dedicated microscopes that can obtain such an extreme resolution, combined with the high sensitivity needed to observe single molecules in living cells.' The experience in super-resolution microscopy and expertise in membrane biochemistry allowed the group to provide images with the required resolution.

The studies revealed that some amino acid transporters are indeed preferentially localized in the eisosome. 'But only when there is no substrate available', explains Poolman. 'If we add the right amino acid, the protein moves away from the eisosome, probably because it takes on a different conformation in the substrate-bound state.' His hypothesis is that the eisosomes protect the transport proteins from recycling. 'The proteins are synthesized in the cell and then transported to the membrane by exocytosis. However, when they are not in an eisosome, these proteins are quickly absorbed again through endocytosis.' So, the transporters are transiently 'stored' in the eisosomes. When the appropriate substrates are present outside the cell, they move away to transport the amino acids into the cell until the proteins are no longer needed, after which they are recycled.

Diffusion

Not all proteins are present in the eisosomes. Poolman: 'For example, we noticed that membrane proteins with large intracellular domains cannot enter them.' They propose that the banana-shaped proteins on the inner side of the membrane get in the way of the intracellular domains, which hinders their diffusion into the eisosomes.

The Poolman group also assessed the speed of diffusion of the proteins in the yeast plasma membrane. They observed that this was about a thousand times lower than in mammalian cells or in the internal membranes of the yeast cell. 'The yeast plasma membrane is more rigid. It can withstand relatively high concentrations of alcohol or acid. This apparently affects protein diffusion.'

The results of this study provide a better insight into the functioning of the yeast cell membrane in general, and more specifically the eisosome islands. They also provide new information on the biogenesis and trafficking of membrane transport proteins, which in time may improve the industrial productivity of yeast.
-end-
Reference: Frans Bianchi, ?ukasz Syga, Gemma Moiset, Dian Spakman, Paul E. Schavemaker, Christiaan M. Punter, Anne-Bart Seinen, Antoine M. van Oijen, Andrew Robinson and Bert Poolman: Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nature Communications 5 February 2018.

University of Groningen

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.