Nav: Home

Round-the-clock power from smart bowties

February 05, 2018

Most sunlight striking the Earth is absorbed by its surfaces, oceans and atmosphere. As a result of this warming, infrared radiation is emitted constantly all around us--estimated to be millions of Gigawatts per second. A KAUST team has now developed a device that can tap into this energy, as well as waste heat from industrial processes, by transforming quadrillionth-of-a-second wave signals into useful electricity.

Unlike solar panels that are limited by daylight hours and weather conditions, infrared heat can be harvested 24 hours a day. One way to achieve this is to treat waste or infrared heat as high-frequency electromagnetic waves. Using appropriately designed antennas, collected waves are sent to a rectifier, typically a semiconductor diode, that converts alternating signals to direct current charge for batteries or power devices.

Putting these 'rectenna' designs into practice has been difficult. Because infrared emissions have very small wavelengths, they need micro- or nanoscale antennas that are not easy to fabricate or test. Additionally, infrared waves oscillate thousands of times faster than a typical semiconductor can move electrons through its junction. "There is no commercial diode in the world that can operate at such high frequency," says Atif Shamim, project leader from KAUST. "That's why we turned to quantum tunneling."

Tunneling devices, such as metal-insulator-metal (MIM) diodes, rectify infrared waves into current by moving electrons through a small barrier. Since this barrier is only a nanometer thin, MIM diodes can handle high-frequency signals on the order of femtoseconds. To generate the intense fields needed for tunneling, the team turned to a unique 'bowtie-shaped' nano-antenna that sandwiches the thin insulator film between two slightly overlapped metallic arms.

"The most challenging part was the nanoscale overlap of the two antenna arms, which required very precise alignment," says postdoctoral researcher, Gaurav Jayaswal. "Nonetheless, by combining clever tricks with the advanced tools at KAUST's nanofabrication facility we accomplished this step".

By choosing metals with different work functions, the new MIM diode could catch the infrared waves with zero applied voltage, a passive feature that switches the device on only when needed. Experiments with infrared exposure revealed the bowtie successfully harvested energy solely from the radiation, and not from thermal effects, as evidenced by a polarization-dependent output voltage.

"This is just the beginning--a proof of concept," says Shamim. "We could have millions of such devices connected to boost overall electricity generation."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Radiation Articles:

Cloudy with a chance of radiation: NASA studies simulated radiation
NASA's Human Research Program (HRP) is simulating space radiation on Earth following upgrades to the NASA Space Radiation Laboratory (NSRL) at the US Department of Energy's Brookhaven National Laboratory.
Visualizing nuclear radiation
Extraordinary decontamination efforts are underway in areas affected by the 2011 nuclear accidents in Japan.
Measuring radiation damage on the fly
Researchers at MIT and elsewhere have found a new way to measure radiation damage in materials, quickly, cheaply and continuously, using transient grating spectroscopy.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Novel advancements in radiation tolerance of HEMTs
When it comes to putting technology in space, size and mass are prime considerations.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Graphene is both transparent and opaque to radiation
A microchip that filters out unwanted radiation with the help of graphene has been developed by scientists from the EPFL and tested by researchers of the University of Geneva (UNIGE).
Radiation causes blindness in wild animals in Chernobyl
This year marks 30 years since the Chernobyl nuclear accident.
No proof that radiation from X rays and CT scans causes cancer
The widespread belief that radiation from X rays, CT scans and other medical imaging can cause cancer is based on an unproven, decades-old theoretical model, according to a study published in the American Journal of Clinical Oncology.
Some radiation okay for expectant mother and fetus
During pregnancy, approximately 5 to 8 percent of women sustain traumatic injuries, including fractures and muscle tears.

Related Radiation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".