Nav: Home

Researchers solve a materials mystery key to next-generation electronic devices

February 05, 2018

MADISON -- Lennon and McCartney. Abbott and Costello. Peanut butter and jelly.

Think of one half of any famous duo, and the other half likely comes to mind. Not only do they complement each other, but together they work better.

The same is true in the burgeoning field of oxide electronics materials. Boasting a wide array of behaviors, including electronic, magnetic and superconducting, these multifunctional materials are poised to expand the way we think about the functions of traditional silicon-based electronic devices such as cell phones or computers.

Yet until now, a critical aspect has been missing -- one that complements the function of electrons in oxide electronics. And a team led by University of Wisconsin-Madison materials scientist Chang-Beom Eom has directly observed that missing second half of the duo necessary to move oxide electronics materials forward.

It's called a two-dimensional hole gas -- a counterpart to something known as a two-dimensional electron gas. For more than a decade, researchers have recognized a hole gas appearance was possible, but haven't been able to create it experimentally.

Writing today (Feb. 5, 2018) in the journal Nature Materials, Eom and his collaborators provided evidence of a hole gas coexisting with the electron gas. They designed an ultrathin material, known as a thin film structure, specifically for this research.

"The 2D hole gas was not possible primarily because perfect-enough crystals could not be grown," says Eom, the Theodore H. Geballe Professor and Harvey D. Spangler Distinguished Professor of materials science and engineering. "Inside, there were defects that killed the hole gas."

Eom is a world expert in material growth, using techniques that allow him to meticulously build, or "grow," each layer of a material with atomic precision. That expertise, combined with insight into the interaction between layers in their structure, was key in identifying the elusive 2D hole gas.

"We were able to design the correct structure and make near-perfect crystals, all without defects that degrade the hole gas," he says.

Also important in identifying the hole gas was the almost-symmetrical way in which Eom assembled the various layers -- something like a club sandwich. While other researchers have made the material in a bi-layer structure, Eom designed a triple layer. He alternated layers of strontium oxide and titanium dioxide on the bottom, then layers of lanthanum oxide and aluminum oxide, then added additional layers of strontium oxide and titanium dioxide on the top.

As a result, the hole gas forms at the interface of the layers on the top, while the electron gas forms at the interface of the layers on the bottom -- the first demonstration of a very powerful complementary pair.

Just as people 50 years ago likely could not have envisioned communicating via wireless devices, the advance sets forth a platform that can enable new concepts-applications that today remain beyond our wildest dreams.

"We're not just improving the performance of devices," says Eom. "So, not improving a cell phone, for example -- but envisioning an entirely new device made possible by this advance. This is the beginning of an exciting new path."
-end-
Eom's collaborators from UW-Madison include physics professor Mark Rzchowski and graduate students in materials science and engineering and physics, as well as collaborators from The Ohio State University, the University of Nebraska at Lincoln, Argonne National Laboratory, and Sungkyunkwan University and Pohang University of Science and Technology in Korea.

This research was supported by grants from the National Science Foundation (DMR-1629270, DMR-1420645 and DMR-1305193), the U.S. Department of Defense (AFOSR FA9550-15-1-0334), the Asian Office of Aerospace Research and Development (FA2386-15-1-4046) and the U.S. Department of Energy (DE-FG02-06ER46327 and DE-AC02-06CH11357).

-- Renee Meiller, (608) 262-2681, meiller@engr.wisc.edu

University of Wisconsin-Madison

Related Crystals Articles:

Raucous crystals
Some organic crystals jump around when heated up. This happens because of an extremely fast change in their crystal structure.
Volcanic crystals give a new view of magma
Volcanologists are gaining a new understanding of what's going on inside the magma reservoir that lies below an active volcano and they're finding a colder, more solid place than previously thought, according to new research published June 16 in the journal Science.
A network of crystals for long-distance quantum communication
Quantum physic can guarantee that a message has not be intercepted.
One-dimensional crystals for low-temperature thermoelectric cooling
Nagoya University researchers studied the thermal and electrical properties of one-dimensional crystals composed of tantalum, silicon and tellurium for thermoelectric cooling at temperatures below 250 K (-23°C).
For first time, researchers measure forces that align crystals and help them snap together
For the first time, researchers have measured the force that draws tiny crystals together and visualized how they swivel and align.
New quantum liquid crystals may play role in future of computers
First 3-D quantum liquid crystals may have applications in quantum computing.
Creating time crystals
A team of Harvard researchers created a previously-only-theoretical time crystal using a small piece of diamond embedded with millions of atomic-scale impurities known as nitrogen-vacancy (NV) centers.
DNA double helix structures crystals
For the first time, engineers of Friedrich-Alexander Universität Erlangen Nürnberg (FAU) have succeeded in producing complex crystal lattices, so-called clathrates, from nanoparticles using DNA strands.
Space station crew cultivates crystals for drug development
Crew members aboard the International Space Station will begin conducting research this week to improve the way we grow crystals on Earth.
Novel nozzle saves crystals
Thanks to an innovative nozzle, scientists can now analyse more types of proteins while using fewer of the hard-to-get protein crystals.

Related Crystals Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".