Nav: Home

TRAPPIST-1 planets probably rich in water

February 05, 2018

Planets around the faint red star TRAPPIST-1, just 40 light-years from Earth, were first detected by the TRAPPIST-South telescope at ESO's La Silla Observatory in 2016. In the following year further observations from ground-based telescopes, including ESO's Very Large Telescope and NASA's Spitzer Space Telescope, revealed that there were no fewer than seven planets in the system (http://www.eso.org/public/news/eso1706/ ), each roughly the same size as the Earth. They are named TRAPPIST-1b,c,d,e,f,g and h, with increasing distance from the central star [1].

Further observations have now been made, both from telescopes on the ground, including the nearly-complete SPECULOOS facility at ESO's Paranal Observatory, and from NASA's Spitzer Space Telescope and the Kepler Space Telescope. A team of scientists led by Simon Grimm at the University of Bern in Switzerland have now applied very complex computer modelling methods to all the available data and have determined the planets' densities with much better precision than was possible before [2].

Simon Grimm explains how the masses are found: "The TRAPPIST-1 planets are so close together that they interfere with each other gravitationally, so the times when they pass in front of the star shift slightly. These shifts depend on the planets' masses, their distances and other orbital parameters. With a computer model, we simulate the planets' orbits until the calculated transits agree with the observed values, and hence derive the planetary masses."

Team member Eric Agol comments on the significance: "A goal of exoplanet studies for some time has been to probe the composition of planets that are Earth-like in size and temperature. The discovery of TRAPPIST-1 and the capabilities of ESO's facilities in Chile and the NASA Spitzer Space Telescope in orbit have made this possible -- giving us our first glimpse of what Earth-sized exoplanets are made of!"

The measurements of the densities, when combined with models of the planets' compositions, strongly suggest that the seven TRAPPIST-1 planets are not barren rocky worlds. They seem to contain significant amounts of volatile material, probably water [3], amounting to up to 5% the planet's mass in some cases -- a huge amount; by comparison the Earth has only about 0.02% water by mass!

"Densities, while important clues to the planets' compositions, do not say anything about habitability. However, our study is an important step forward as we continue to explore whether these planets could support life," said Brice-Olivier Demory, co-author at the University of Bern.

TRAPPIST-1b and c, the innermost planets, are likely to have rocky cores and be surrounded by atmospheres much thicker than Earth's. TRAPPIST-1d, meanwhile, is the lightest of the planets at about 30 percent the mass of Earth. Scientists are uncertain whether it has a large atmosphere, an ocean or an ice layer.

Scientists were surprised that TRAPPIST-1e is the only planet in the system slightly denser than Earth, suggesting that it may have a denser iron core and that it does not necessarily have a thick atmosphere, ocean or ice layer. It is mysterious that TRAPPIST-1e appears to be so much rockier in its composition than the rest of the planets. In terms of size, density and the amount of radiation it receives from its star, this is the planet that is most similar to Earth.

TRAPPIST-1f, g and h are far enough from the host star that water could be frozen into ice across their surfaces. If they have thin atmospheres, they would be unlikely to contain the heavy molecules that we find on Earth, such as carbon dioxide.

"It is interesting that the densest planets are not the ones that are the closest to the star, and that the colder planets cannot harbour thick atmospheres," notes Caroline Dorn, study co-author based at the University of Zurich, Switzerland.

The TRAPPIST-1 system will continue to be a focus for intense scrutiny in the future with many facilities on the ground and in space, including ESO's Extremely Large Telescope and the NASA/ESA/CSA James Webb Space Telescope.

Astronomers are also working hard to search for further planets around faint red stars like TRAPPIST-1. As team member Michaël Gillon explains [4]: "This result highlights the huge interest of exploring nearby ultracool dwarf stars -- like TRAPPIST-1 -- for transiting terrestrial planets. This is exactly the goal of SPECULOOS, our new exoplanet search that is about to start operations at ESO's Paranal Observatory in Chile."
-end-
Notes

[1] The planets were discovered using the ground-based TRAPPIST-South at ESO's La Silla Observatory in Chile; TRAPPIST-North in Morocco; the orbiting NASA Spitzer Space Telescope; ESO's HAWK-I instrument on the Very Large Telescope at the Paranal Observatory in Chile; the 3.8-metre UKIRT in Hawaii; the 2-metre Liverpool and 4-metre William Herschel telescopes on La Palma in the Canary Islands; and the 1-metre SAAOtelescope in South Africa.

[2] Measuring the densities of exoplanets is not easy. You need to find out both the size of the planet and its mass. The TRAPPIST-1 planets were found using the transit method -- by searching for small dips in the brightness of the star as a planet passes across its disc and blocks some light. This gives a good estimate of the planet's size. However, measuring a planet's mass is harder -- if no other effects are present planets with different masses have the same orbits and there is no direct way to tell them apart. But there is a way in a multi-planet system -- more massive planets disturb the orbits of the other planets more than lighter ones. This in turn affects the timing of transits. The team led by Simon Grimm have used these complicated and very subtle effects to estimate the most likely masses for all seven planets, based on a large body of timing data and very sophisticated data analysis and modelling.

[3] The models used also consider alternative volatiles, such as carbon dioxide. However, they favour water, as vapour, liquid or ice, as the most likely largest component of the planets' surface material as water is the most abundant source of volatiles for solar abundance protoplanetary discs.

[4] The SPECULOOS survey telescopes facility is nearly complete at ESO's Paranal Observatory.

More information

This research was presented in a paper entitled "The nature of the TRAPPIST-1 exoplanets", by S. Grimm et al., to appear in the journal Astronomy & Astrophysics.

The team is composed of Simon L. Grimm (University of Bern, Center for Space and Habitability, Bern, Switzerland) , Brice-Olivier Demory (University of Bern, Center for Space and Habitability, Bern, Switzerland), Michaël Gillon (Space Sciences, Technologies and Astrophysics Research Institute, Université de Liège, Liège, Belgium), Caroline Dorn (University of Bern, Center for Space and Habitability, Bern, Switzerland; University of Zurich, Institute of Computational Sciences, Zurich, Switzerland), Eric Agol (University of Washington, Seattle, Washington, USA; NASA Astrobiology Institute's Virtual Planetary Laboratory, Seattle, Washington, USA; Institut d'Astrophysique de Paris, Paris, France), Artem Burdanov (Space Sciences, Technologies and Astrophysics Research Institute, Université de Liège, Liège, Belgium), Laetitia Delrez (Cavendish Laboratory, Cambridge, UK; Space Sciences, Technologies and Astrophysics Research Institute, Université de Liège, Liège, Belgium), Marko Sestovic (University of Bern, Center for Space and Habitability, Bern, Switzerland), Amaury H.M.J. Triaud (Institute of Astronomy, Cambridge, UK; University of Birmingham, Birmingham, UK), Martin Turbet (Laboratoire de Météorologie Dynamique, IPSL, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France), Émeline Bolmont (Université Paris Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS, Gif-sur-Yvette, France), Anthony Caldas (Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France), Julien de Wit (Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA), Emmanuël Jehin (Space Sciences, Technologies and Astrophysics Research Institute, Université de Liège, Liège, Belgium), Jérémy Leconte (Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France), Sean N. Raymond (Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France), Valérie Van Grootel (Space Sciences, Technologies and Astrophysics Research Institute, Université de Liège, Liège, Belgium), Adam J. Burgasser (Center for Astrophysics and Space Science, University of California San Diego, La Jolla, California, USA), Sean Carey (IPAC, Calif. Inst. of Technology, Pasadena, California, USA), Daniel Fabrycky (Department of Astronomy and Astrophysics, Univ. of Chicago, Chicago, Illinois, USA), Kevin Heng (University of Bern, Center for Space and Habitability, Bern, Switzerland), David M. Hernandez (Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA), James G. Ingalls (IPAC, Calif. Inst. of Technology, Pasadena, California, USA), Susan Lederer (NASA Johnson Space Center, Houston, Texas, USA), Franck Selsis (Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, Pessac, France) and Didier Queloz (Cavendish Laboratory, Cambridge, UK).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and by Australia as a strategic partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become "the world's biggest eye on the sky".

Links

* Research paper - http://www.eso.org/public/archives/releases/sciencepapers/eso1805/eso1805a.pdf

* Link to Hubble release on atmospheres of TRAPPIST-1 planets - https://www.spacetelescope.org/news/heic1802/

* More information about TRAPPIST-South - http://www.eso.org/public/teles-instr/lasilla/trappist/

* More information about SPECULOOS - http://www.eso.org/public/teles-instr/paranal-observatory/speculoos/

* NASA's Spitzer Space Telescope - http://www.spitzer.caltech.edu/

* NASA's Kepler Space Telescope - https://www.nasa.gov/mission_pages/kepler/main/index.html

Contacts

Simon Grimm
SAINT-EX Research Group, University of Bern, Center for Space and Habitability
Bern, Switzerland
Tel: +41 31 631 3995
Email: simon.grimm@csh.unibe.ch

Brice-Olivier Demory
SAINT-EX Research Group, University of Bern, Center for Space and Habitability
Bern, Switzerland
Tel: +41 31 631 5157
Email: brice.demory@csh.unibe.ch

Richard Hook
ESO Public Information Officer
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

ESO

Related Planets Articles:

Ultracool dwarf and the 7 planets
Astronomers have found a system of seven Earth-sized planets just 40 light-years away.
ALMA measures size of seeds of planets
Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA), have for the first time, achieved a precise size measurement of small dust particles around a young star through radio-wave polarization.
Origin of minor planets' rings revealed
A team of researchers has clarified the origin of the rings recently discovered around two minor planets known as centaurs, and their results suggest the existence of rings around other centaurs.
Are planets setting the sun's pace?
The sun's activity is determined by the sun's magnetic field.
A better way to learn if alien planets have the right stuff
A new method for analyzing the chemical composition of stars may help scientists winnow the search for Earth 2.0.
A new Goldilocks for habitable planets
The search for habitable, alien worlds needs to make room for a second 'Goldilocks,' according to a Yale University researcher.
Probing giant planets' dark hydrogen
Hydrogen is the most-abundant element in the universe, but there is still so much we have to learn about it.
Universe's first life might have been born on carbon planets
Our Earth consists of silicate rocks and an iron core with a thin veneer of water and life.
Number of habitable planets could be limited by stifling atmospheres
New research has revealed that fewer than predicted planets may be capable of harbouring life because their atmospheres keep them too hot.
Footprints of baby planets in a gas disk
A new analysis of the ALMA data for a young star HL Tauri provides yet more firm evidence of baby planets around the star.

Related Planets Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".